Spheroidal Wave Functions - 30.11 Radial Spheroidal Wave Functions

From testwiki
Revision as of 17:53, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
30.11#Ex5 S n m ( 3 ) ( z , γ ) = S n m ( 1 ) ( z , γ ) + i S n m ( 2 ) ( z , γ ) radial-spheroidal-wave-S 𝑚 3 𝑛 𝑧 𝛾 radial-spheroidal-wave-S 𝑚 1 𝑛 𝑧 𝛾 imaginary-unit radial-spheroidal-wave-S 𝑚 2 𝑛 𝑧 𝛾 {\displaystyle{\displaystyle S^{m(3)}_{n}\left(z,\gamma\right)=S^{m(1)}_{n}% \left(z,\gamma\right)+\mathrm{i}S^{m(2)}_{n}\left(z,\gamma\right)}}
\radsphwaveS{m}{3}{n}@{z}{\gamma} = \radsphwaveS{m}{1}{n}@{z}{\gamma}+\iunit\radsphwaveS{m}{2}{n}@{z}{\gamma}

Error
SpheroidalS3[n, m, z, \[Gamma]] == SpheroidalS1[n, m, z, \[Gamma]]+ I*SpheroidalS2[n, m, z, \[Gamma]]
Missing Macro Error Failure - Skipped - Because timed out
30.11#Ex6 S n m ( 4 ) ( z , γ ) = S n m ( 1 ) ( z , γ ) - i S n m ( 2 ) ( z , γ ) radial-spheroidal-wave-S 𝑚 4 𝑛 𝑧 𝛾 radial-spheroidal-wave-S 𝑚 1 𝑛 𝑧 𝛾 imaginary-unit radial-spheroidal-wave-S 𝑚 2 𝑛 𝑧 𝛾 {\displaystyle{\displaystyle S^{m(4)}_{n}\left(z,\gamma\right)=S^{m(1)}_{n}% \left(z,\gamma\right)-\mathrm{i}S^{m(2)}_{n}\left(z,\gamma\right)}}
\radsphwaveS{m}{4}{n}@{z}{\gamma} = \radsphwaveS{m}{1}{n}@{z}{\gamma}-\iunit\radsphwaveS{m}{2}{n}@{z}{\gamma}

Error
SpheroidalS4[n, m, z, \[Gamma]] == SpheroidalS1[n, m, z, \[Gamma]]- I*SpheroidalS2[n, m, z, \[Gamma]]
Missing Macro Error Failure - Skipped - Because timed out
30.11.E7 𝒲 { S n m ( 1 ) ( z , γ ) , S n m ( 2 ) ( z , γ ) } = 1 γ ( z 2 - 1 ) Wronskian radial-spheroidal-wave-S 𝑚 1 𝑛 𝑧 𝛾 radial-spheroidal-wave-S 𝑚 2 𝑛 𝑧 𝛾 1 𝛾 superscript 𝑧 2 1 {\displaystyle{\displaystyle\mathscr{W}\left\{S^{m(1)}_{n}\left(z,\gamma\right% ),S^{m(2)}_{n}\left(z,\gamma\right)\right\}=\frac{1}{\gamma(z^{2}-1)}}}
\Wronskian@{\radsphwaveS{m}{1}{n}@{z}{\gamma},\radsphwaveS{m}{2}{n}@{z}{\gamma}} = \frac{1}{\gamma(z^{2}-1)}

Error
Wronskian[{SpheroidalS1[n, m, z, \[Gamma]], SpheroidalS2[n, m, z, \[Gamma]]}, z] == Divide[1,\[Gamma]*((z)^(2)- 1)]
Missing Macro Error Failure - Error