Mathieu Functions and Hill’s Equation - 28.7 Analytic Continuation of Eigenvalues

From testwiki
Revision as of 17:50, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.7.E1 n = 0 ( a 2 n ( q ) - ( 2 n ) 2 ) = 0 superscript subscript 𝑛 0 Mathieu-eigenvalue-a 2 𝑛 𝑞 superscript 2 𝑛 2 0 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\left(a_{2n}\left(q\right)-(2n)% ^{2}\right)=0}}
\sum_{n=0}^{\infty}\left(\Mathieueigvala{2n}@{q}-(2n)^{2}\right) = 0

sum(MathieuA(2*n, q)-(2*n)^(2), n = 0..infinity) = 0
Sum[MathieuCharacteristicA[2*n, q]-(2*n)^(2), {n, 0, Infinity}, GenerateConditions->None] == 0
Failure Failure Skipped - Because timed out Skipped - Because timed out
28.7.E2 n = 0 ( a 2 n + 1 ( q ) - ( 2 n + 1 ) 2 ) = q superscript subscript 𝑛 0 Mathieu-eigenvalue-a 2 𝑛 1 𝑞 superscript 2 𝑛 1 2 𝑞 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\left(a_{2n+1}\left(q\right)-(2% n+1)^{2}\right)=q}}
\sum_{n=0}^{\infty}\left(\Mathieueigvala{2n+1}@{q}-(2n+1)^{2}\right) = q

sum(MathieuA(2*n + 1, q)-(2*n + 1)^(2), n = 0..infinity) = q
Sum[MathieuCharacteristicA[2*n + 1, q]-(2*n + 1)^(2), {n, 0, Infinity}, GenerateConditions->None] == q
Failure Failure Skipped - Because timed out Skipped - Because timed out
28.7.E3 n = 0 ( b 2 n + 1 ( q ) - ( 2 n + 1 ) 2 ) = - q superscript subscript 𝑛 0 Mathieu-eigenvalue-b 2 𝑛 1 𝑞 superscript 2 𝑛 1 2 𝑞 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\left(b_{2n+1}\left(q\right)-(2% n+1)^{2}\right)=-q}}
\sum_{n=0}^{\infty}\left(\Mathieueigvalb{2n+1}@{q}-(2n+1)^{2}\right) = -q

sum(MathieuB(2*n + 1, q)-(2*n + 1)^(2), n = 0..infinity) = - q
Sum[MathieuCharacteristicB[2*n + 1, q]-(2*n + 1)^(2), {n, 0, Infinity}, GenerateConditions->None] == - q
Failure Failure Skipped - Because timed out Skipped - Because timed out
28.7.E4 n = 0 ( b 2 n + 2 ( q ) - ( 2 n + 2 ) 2 ) = 0 superscript subscript 𝑛 0 Mathieu-eigenvalue-b 2 𝑛 2 𝑞 superscript 2 𝑛 2 2 0 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\left(b_{2n+2}\left(q\right)-(2% n+2)^{2}\right)=0}}
\sum_{n=0}^{\infty}\left(\Mathieueigvalb{2n+2}@{q}-(2n+2)^{2}\right) = 0

sum(MathieuB(2*n + 2, q)-(2*n + 2)^(2), n = 0..infinity) = 0
Sum[MathieuCharacteristicB[2*n + 2, q]-(2*n + 2)^(2), {n, 0, Infinity}, GenerateConditions->None] == 0
Failure Failure Skipped - Because timed out Skipped - Because timed out