Functions of Number Theory - 28.1 Special Notation

From testwiki
Revision as of 17:49, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.1#Ex15 Se n ( s , z ) = ce n ( z , q ) ce n ( 0 , q ) subscript Se 𝑛 𝑠 𝑧 Mathieu-ce 𝑛 𝑧 𝑞 Mathieu-ce 𝑛 0 𝑞 {\displaystyle{\displaystyle\mathrm{Se}_{n}(s,z)=\dfrac{\mathrm{ce}_{n}\left(z% ,q\right)}{\mathrm{ce}_{n}\left(0,q\right)}}}
\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}

S*exp(1)[n]*(s , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))
S*Subscript[E, n]*(s , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]
Failure Failure Error Error
28.1#Ex16 So n ( s , z ) = se n ( z , q ) se n ( 0 , q ) subscript So 𝑛 𝑠 𝑧 Mathieu-se 𝑛 𝑧 𝑞 diffop Mathieu-se 𝑛 1 0 𝑞 {\displaystyle{\displaystyle\mathrm{So}_{n}(s,z)=\dfrac{\mathrm{se}_{n}\left(z% ,q\right)}{\mathrm{se}_{n}'\left(0,q\right)}}}
\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}

So[n](s , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))
Subscript[So, n][s , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]
Error Failure - Error
28.1#Ex17 Se n ( c , z ) = ce n ( z , q ) ce n ( 0 , q ) subscript Se 𝑛 𝑐 𝑧 Mathieu-ce 𝑛 𝑧 𝑞 Mathieu-ce 𝑛 0 𝑞 {\displaystyle{\displaystyle\mathrm{Se}_{n}(c,z)=\dfrac{\mathrm{ce}_{n}\left(z% ,q\right)}{\mathrm{ce}_{n}\left(0,q\right)}}}
\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}

S*exp(1)[n]*(c , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))
S*Subscript[E, n]*(c , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]
Failure Failure Error Error
28.1#Ex18 So n ( c , z ) = se n ( z , q ) se n ( 0 , q ) subscript So 𝑛 𝑐 𝑧 Mathieu-se 𝑛 𝑧 𝑞 diffop Mathieu-se 𝑛 1 0 𝑞 {\displaystyle{\displaystyle\mathrm{So}_{n}(c,z)=\dfrac{\mathrm{se}_{n}\left(z% ,q\right)}{\mathrm{se}_{n}'\left(0,q\right)}}}
\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}

So[n](c , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))
Subscript[So, n][c , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]
Error Failure - Error