Functions of Number Theory - 27.13 Functions

From testwiki
Revision as of 17:49, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.13.E4 ϑ ( x ) = 1 + 2 m = 1 x m 2 a-theta-function 𝑥 1 2 superscript subscript 𝑚 1 superscript 𝑥 superscript 𝑚 2 {\displaystyle{\displaystyle\vartheta\left(x\right)=1+2\sum_{m=1}^{\infty}x^{m% ^{2}}}}
\AThetaFunction@{x} = 1+2\sum_{m=1}^{\infty}x^{m^{2}}
| x | < 1 𝑥 1 {\displaystyle{\displaystyle|x|<1}}
1+2*(sum((x)^(m^2), m = 1 .. infinity)) = 1 + 2*sum((x)^((m)^(2)), m = 1..infinity)
Error
Successful Missing Macro Error - -
27.13.E6 ( ϑ ( x ) ) 2 = 1 + 4 n = 1 ( δ 1 ( n ) - δ 3 ( n ) ) x n superscript a-theta-function 𝑥 2 1 4 superscript subscript 𝑛 1 subscript 𝛿 1 𝑛 subscript 𝛿 3 𝑛 superscript 𝑥 𝑛 {\displaystyle{\displaystyle(\vartheta\left(x\right))^{2}=1+4\sum_{n=1}^{% \infty}\left(\delta_{1}(n)-\delta_{3}(n)\right)x^{n}}}
(\AThetaFunction@{x})^{2} = 1+4\sum_{n=1}^{\infty}\left(\delta_{1}(n)-\delta_{3}(n)\right)x^{n}
| x | < 1 𝑥 1 {\displaystyle{\displaystyle|x|<1}}
(1+2*(sum((x)^(m^2), m = 1 .. infinity)))^(2) = 1 + 4*sum((delta[1](n)- delta[3](n))*(x)^(n), n = 1..infinity)
Error
Failure Missing Macro Error
Failed [300 / 300]
Result: 3.532372013
Test Values: {delta = 1/2*3^(1/2)+1/2*I, x = 1/2, delta[1] = 1/2*3^(1/2)+1/2*I, delta[3] = 1/2*3^(1/2)+1/2*I}

Result: -7.395831219+2.928203232*I
Test Values: {delta = 1/2*3^(1/2)+1/2*I, x = 1/2, delta[1] = 1/2*3^(1/2)+1/2*I, delta[3] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
-