Weierstrass Elliptic and Modular Functions - 23.22 Methods of Computation

From testwiki
Revision as of 17:42, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.22.E2 2 ω 1 = - 2 i ω 3 2 subscript 𝜔 1 2 𝑖 subscript 𝜔 3 {\displaystyle{\displaystyle 2\omega_{1}=-2i\omega_{3}}}
2\omega_{1} = -2i\omega_{3}

2*omega[1] = - 2*I*omega[3]
2*Subscript[\[Omega], 1] == - 2*I*Subscript[\[Omega], 3]
Failure Failure
Failed [288 / 300]
Result: .732050808+2.732050808*I
Test Values: {omega = 1/2*3^(1/2)+1/2*I, omega[1] = 1/2*3^(1/2)+1/2*I, omega[3] = 1/2*3^(1/2)+1/2*I}

Result: 3.464101616+2.000000000*I
Test Values: {omega = 1/2*3^(1/2)+1/2*I, omega[1] = 1/2*3^(1/2)+1/2*I, omega[3] = 1/2-1/2*I*3^(1/2)}

... skip entries to safe data
Failed [288 / 300]
Result: Complex[0.7320508075688775, 2.732050807568877]
Test Values: {Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.4641016151377544, 2.0]
Test Values: {Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
23.22.E2 - 2 i ω 3 = ( Γ ( 1 4 ) ) 2 2 π c 1 / 4 2 𝑖 subscript 𝜔 3 superscript Euler-Gamma 1 4 2 2 𝜋 superscript 𝑐 1 4 {\displaystyle{\displaystyle-2i\omega_{3}=\frac{\left(\Gamma\left(\frac{1}{4}% \right)\right)^{2}}{2\sqrt{\pi}c^{1/4}}}}
-2i\omega_{3} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{2\sqrt{\pi}c^{1/4}}

- 2*I*omega[3] = ((GAMMA((1)/(4)))^(2))/(2*sqrt(Pi)*(c)^(1/4))
- 2*I*Subscript[\[Omega], 3] == Divide[(Gamma[Divide[1,4]])^(2),2*Sqrt[Pi]*(c)^(1/4)]
Failure Failure
Failed [300 / 300]
Result: -1.369296462+.637245654*I
Test Values: {c = -3/2, omega = 1/2*3^(1/2)+1/2*I, omega[3] = 1/2*3^(1/2)+1/2*I}

Result: -.637245654+3.369296462*I
Test Values: {c = -3/2, omega = 1/2*3^(1/2)+1/2*I, omega[3] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-1.3692964596386887, 0.6372456520698113]
Test Values: {Rule[c, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6372456520698113, 3.3692964596386883]
Test Values: {Rule[c, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.22.E3 2 ω 1 = 2 e - π i / 3 ω 3 2 subscript 𝜔 1 2 superscript 𝑒 𝜋 𝑖 3 subscript 𝜔 3 {\displaystyle{\displaystyle 2\omega_{1}=2e^{-\pi i/3}\omega_{3}}}
2\omega_{1} = 2e^{-\pi i/3}\omega_{3}

2*omega[1] = 2*exp(- Pi*I/3)*omega[3]
2*Subscript[\[Omega], 1] == 2*Exp[- Pi*I/3]*Subscript[\[Omega], 3]
Failure Failure
Failed [300 / 300]
Result: 0.+2.000000001*I
Test Values: {omega = 1/2*3^(1/2)+1/2*I, omega[1] = 1/2*3^(1/2)+1/2*I, omega[3] = 1/2*3^(1/2)+1/2*I}

Result: .732050807-.732050808*I
Test Values: {omega = 1/2*3^(1/2)+1/2*I, omega[1] = 1/2*3^(1/2)+1/2*I, omega[3] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.0, 1.9999999999999998]
Test Values: {Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.7320508075688772, -0.7320508075688773]
Test Values: {Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.22.E3 2 e - π i / 3 ω 3 = ( Γ ( 1 3 ) ) 3 2 π d 1 / 6 2 superscript 𝑒 𝜋 𝑖 3 subscript 𝜔 3 superscript Euler-Gamma 1 3 3 2 𝜋 superscript 𝑑 1 6 {\displaystyle{\displaystyle 2e^{-\pi i/3}\omega_{3}=\frac{\left(\Gamma\left(% \frac{1}{3}\right)\right)^{3}}{2\pi d^{1/6}}}}
2e^{-\pi i/3}\omega_{3} = \frac{\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2\pi d^{1/6}}

2*exp(- Pi*I/3)*omega[3] = ((GAMMA((1)/(3)))^(3))/(2*Pi*(d)^(1/6))
2*Exp[- Pi*I/3]*Subscript[\[Omega], 3] == Divide[(Gamma[Divide[1,3]])^(3),2*Pi*(d)^(1/6)]
Failure Failure
Failed [300 / 300]
Result: -1.316213396-.7333114397*I
Test Values: {d = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, omega[3] = 1/2*3^(1/2)+1/2*I}

Result: -2.048264203+1.998739369*I
Test Values: {d = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, omega[3] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-1.3162133925119985, -0.7333114390610043]
Test Values: {Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.048264200080876, 1.9987393685078727]
Test Values: {Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 3], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.22#Ex1 2 ω 1 = 0.867568 + i 1.466607 2 subscript 𝜔 1 0.867568 𝑖 1.466607 {\displaystyle{\displaystyle 2\omega_{1}=0.867568+i1.466607}}
2\omega_{1} = 0.867568+i1.466607

2*omega[1] = 0.867568 + I*1.466607
2*Subscript[\[Omega], 1] == 0.867568 + I*1.466607
Skipped - no semantic math Skipped - no semantic math - -
23.22#Ex2 2 ω 3 = - 1.223741 + i 1.328694 2 subscript 𝜔 3 1.223741 𝑖 1.328694 {\displaystyle{\displaystyle 2\omega_{3}=-1.223741+i1.328694}}
2\omega_{3} = -1.223741+i1.328694

2*omega[3] = - 1.223741 + I*1.328694
2*Subscript[\[Omega], 3] == - 1.223741 + I*1.328694
Skipped - no semantic math Skipped - no semantic math - -
23.22#Ex3 τ = 0.305480 + i 1.015109 𝜏 0.305480 𝑖 1.015109 {\displaystyle{\displaystyle\tau=0.305480+i1.015109}}
\tau = 0.305480+i1.015109

tau = 0.305480 + I*1.015109
\[Tau] == 0.305480 + I*1.015109
Skipped - no semantic math Skipped - no semantic math - -