Weierstrass Elliptic and Modular Functions - 23.9 Laurent and Other Power Series

From testwiki
Revision as of 17:42, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.9.E5 c n = 3 ( 2 n + 1 ) ( n - 3 ) m = 2 n - 2 c m c n - m subscript 𝑐 𝑛 3 2 𝑛 1 𝑛 3 superscript subscript 𝑚 2 𝑛 2 subscript 𝑐 𝑚 subscript 𝑐 𝑛 𝑚 {\displaystyle{\displaystyle c_{n}=\frac{3}{(2n+1)(n-3)}\sum_{m=2}^{n-2}c_{m}c% _{n-m}}}
c_{n} = \frac{3}{(2n+1)(n-3)}\sum_{m=2}^{n-2}c_{m}c_{n-m}
n 4 𝑛 4 {\displaystyle{\displaystyle n\geq 4}}
c[n] = (3)/((2*n + 1)*(n - 3))*sum(c[m]*c[n - m], m = 2..n - 2)
Subscript[c, n] == Divide[3,(2*n + 1)*(n - 3)]*Sum[Subscript[c, m]*Subscript[c, n - m], {m, 2, n - 2}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
23.9.E8 a m , n = 3 ( m + 1 ) a m + 1 , n - 1 + 16 3 ( n + 1 ) a m - 2 , n + 1 - 1 3 ( 2 m + 3 n - 1 ) ( 4 m + 6 n - 1 ) a m - 1 , n subscript 𝑎 𝑚 𝑛 3 𝑚 1 subscript 𝑎 𝑚 1 𝑛 1 16 3 𝑛 1 subscript 𝑎 𝑚 2 𝑛 1 1 3 2 𝑚 3 𝑛 1 4 𝑚 6 𝑛 1 subscript 𝑎 𝑚 1 𝑛 {\displaystyle{\displaystyle a_{m,n}=3(m+1)a_{m+1,n-1}+\tfrac{16}{3}(n+1)a_{m-% 2,n+1}-\tfrac{1}{3}(2m+3n-1)(4m+6n-1)a_{m-1,n}}}
a_{m,n} = 3(m+1)a_{m+1,n-1}+\tfrac{16}{3}(n+1)a_{m-2,n+1}-\tfrac{1}{3}(2m+3n-1)(4m+6n-1)a_{m-1,n}

a[m , n] = 3*(m + 1)*a[m + 1 , n - 1]+(16)/(3)*(n + 1)*a[m - 2 , n + 1]-(1)/(3)*(2*m + 3*n - 1)*(4*m + 6*n - 1)*a[m - 1 , n]
Subscript[a, m , n] == 3*(m + 1)*Subscript[a, m + 1 , n - 1]+Divide[16,3]*(n + 1)*Subscript[a, m - 2 , n + 1]-Divide[1,3]*(2*m + 3*n - 1)*(4*m + 6*n - 1)*Subscript[a, m - 1 , n]
Skipped - no semantic math Skipped - no semantic math - -