Weierstrass Elliptic and Modular Functions - 23.6 Relations to Other Functions

From testwiki
Revision as of 17:41, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.6#Ex1 q = e i π τ 𝑞 superscript 𝑒 𝑖 𝜋 𝜏 {\displaystyle{\displaystyle q=e^{i\pi\tau}}}
q = e^{i\pi\tau}

q = exp(I*Pi*tau)
q == Exp[I*Pi*\[Tau]]
Skipped - no semantic math Skipped - no semantic math - -
23.6#Ex2 τ = ω 3 / ω 1 𝜏 subscript 𝜔 3 subscript 𝜔 1 {\displaystyle{\displaystyle\tau=\omega_{3}/\omega_{1}}}
\tau = \omega_{3}/\omega_{1}

tau = omega[3]/omega[1]
\[Tau] == Subscript[\[Omega], 3]/Subscript[\[Omega], 1]
Skipped - no semantic math Skipped - no semantic math - -
23.6.E8 η 1 = - π 2 12 ω 1 θ 1 ′′′ ( 0 , q ) θ 1 ( 0 , q ) subscript 𝜂 1 superscript 𝜋 2 12 subscript 𝜔 1 diffop Jacobi-theta 1 3 0 𝑞 diffop Jacobi-theta 1 1 0 𝑞 {\displaystyle{\displaystyle\eta_{1}=-\frac{\pi^{2}}{12\omega_{1}}\frac{\theta% _{1}'''\left(0,q\right)}{\theta_{1}'\left(0,q\right)}}}
\eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}

eta[1] = -((Pi)^(2))/(12*omega[1])*(diff( JacobiTheta1(0, q), 0$(3) ))/(diff( JacobiTheta1(0, q), 0$(1) ))
Subscript[\[Eta], 1] == -Divide[(Pi)^(2),12*Subscript[\[Omega], 1]]*Divide[D[EllipticTheta[1, 0, q], {0, 3}],D[EllipticTheta[1, 0, q], {0, 1}]]
Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[0.712277344720507, -0.4112335167120565], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[-0.4112335167120564, -0.712277344720507], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.6#Ex5 K 2 = ( K ( k ) ) 2 complete-elliptic-integral-first-kind-K 2 𝑘 superscript complete-elliptic-integral-first-kind-K 𝑘 2 {\displaystyle{\displaystyle{K^{2}}=(K\left(k\right))^{2}}}
\compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}

(EllipticK(k))^(2) = (EllipticK(k))^(2)
(EllipticK[(k)^2])^(2) == (EllipticK[(k)^2])^(2)
Successful Successful - Successful [Tested: 3]