Orthogonal Polynomials - 18.20 Hahn Class: Explicit Representations

From testwiki
Revision as of 17:25, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.20.E8 C n ⁑ ( x ; a ) = F 0 2 ⁑ ( - n , - x - ; - a - 1 ) Charlier-polynomial-C 𝑛 π‘₯ π‘Ž Gauss-hypergeometric-pFq 2 0 𝑛 π‘₯ superscript π‘Ž 1 {\displaystyle{\displaystyle C_{n}\left(x;a\right)={{}_{2}F_{0}}\left({-n,-x% \atop-};-a^{-1}\right)}}
\CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}

Error
HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]] == HypergeometricPFQ[{- n , - x}, {-}, - (a)^(- 1)]
Missing Macro Error Missing Macro Error - -
18.20.E9 p n ⁑ ( x ; a , b , a Β― , b Β― ) = i n ⁒ ( a + a Β― ) n ⁒ ( a + b Β― ) n n ! ⁒ F 2 3 ⁑ ( - n , n + 2 ⁒ β„œ ⁑ ( a + b ) - 1 , a + i ⁒ x a + a Β― , a + b Β― ; 1 ) continuous-Hahn-polynomial-p 𝑛 π‘₯ π‘Ž 𝑏 π‘Ž 𝑏 imaginary-unit 𝑛 Pochhammer π‘Ž π‘Ž 𝑛 Pochhammer π‘Ž 𝑏 𝑛 𝑛 Gauss-hypergeometric-pFq 3 2 𝑛 𝑛 2 π‘Ž 𝑏 1 π‘Ž imaginary-unit π‘₯ π‘Ž π‘Ž π‘Ž 𝑏 1 {\displaystyle{\displaystyle p_{n}\left(x;a,b,\overline{a},\overline{b}\right)% =\frac{{\mathrm{i}^{n}}{\left(a+\overline{a}\right)_{n}}{\left(a+\overline{b}% \right)_{n}}}{n!}\*{{}_{3}F_{2}}\left({-n,n+2\Re\left(a+b\right)-1,a+\mathrm{i% }x\atop a+\overline{a},a+\overline{b}};1\right)}}
\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}

Error
I^(n)*Divide[Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[a + b] - 1, a + I*(x)}, {a + Conjugate[a], a + Conjugate[b]}, 1] == Divide[(I)^(n)* Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n],(n)!]* HypergeometricPFQ[{- n , n + 2*Re[a + b]- 1 , a + I*x}, {a + Conjugate[a], a + Conjugate[b]}, 1]
Missing Macro Error Missing Macro Error - -