q -Hypergeometric and Related Functions - 18.1 Notation

From testwiki
Revision as of 17:21, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.1#Ex7 ( z ; q ) 0 = 1 q-Pochhammer-symbol 𝑧 π‘ž 0 1 {\displaystyle{\displaystyle\left(z;q\right)_{0}=1}}
\qPochhammer{z}{q}{0} = 1

QPochhammer(z, q, 0) = 1
QPochhammer[z, q, 0] == 1
Successful Successful - Successful [Tested: 70]
18.1#Ex10 ( z ; q ) ∞ = ∏ j = 0 ∞ ( 1 - z ⁒ q j ) q-Pochhammer-symbol 𝑧 π‘ž superscript subscript product 𝑗 0 1 𝑧 superscript π‘ž 𝑗 {\displaystyle{\displaystyle\left(z;q\right)_{\infty}=\prod_{j=0}^{\infty}(1-% zq^{j})}}
\qPochhammer{z}{q}{\infty} = \prod_{j=0}^{\infty}(1-zq^{j})

QPochhammer(z, q, infinity) = product(1 - z*(q)^(j), j = 0..infinity)
QPochhammer[z, q, Infinity] == Product[1 - z*(q)^(j), {j, 0, Infinity}, GenerateConditions->None]
Failure Failure Error
Failed [56 / 70]
Result: Plus[Times[-1.0, QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Times[-1.0, QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
18.1.E1 C n ( 0 ) ⁑ ( x ) = 2 n ⁒ T n ⁑ ( x ) ultraspherical-Gegenbauer-polynomial 0 𝑛 π‘₯ 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ {\displaystyle{\displaystyle C^{(0)}_{n}\left(x\right)=\frac{2}{n}T_{n}\left(x% \right)}}
\ultrasphpoly{0}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}

GegenbauerC(n, 0, x) = (2)/(n)*ChebyshevT(n, x)
GegenbauerC[n, 0, x] == Divide[2,n]*ChebyshevT[n, x]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: -6.0
Test Values: {Rule[n, 3], Rule[x, 1.5]}

Result: 0.6666666666666666
Test Values: {Rule[n, 3], Rule[x, 0.5]}

... skip entries to safe data
18.1.E1 2 n ⁒ T n ⁑ ( x ) = 2 ⁒ ( n - 1 ) ! ( 1 2 ) n ⁒ P n ( - 1 2 , - 1 2 ) ⁑ ( x ) 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 2 𝑛 1 Pochhammer 1 2 𝑛 Jacobi-polynomial-P 1 2 1 2 𝑛 π‘₯ {\displaystyle{\displaystyle\frac{2}{n}T_{n}\left(x\right)=\frac{2(n-1)!}{{% \left(\tfrac{1}{2}\right)_{n}}}P^{(-\frac{1}{2},-\frac{1}{2})}_{n}\left(x% \right)}}
\frac{2}{n}\ChebyshevpolyT{n}@{x} = \frac{2(n-1)!}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}

(2)/(n)*ChebyshevT(n, x) = (2*factorial(n - 1))/(pochhammer((1)/(2), n))*JacobiP(n, -(1)/(2), -(1)/(2), x)
Divide[2,n]*ChebyshevT[n, x] == Divide[2*(n - 1)!,Pochhammer[Divide[1,2], n]]*JacobiP[n, -Divide[1,2], -Divide[1,2], x]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 3]
18.1.E2 G n ⁑ ( p , q , x ) = n ! ( n + p ) n ⁒ P n ( p - q , q - 1 ) ⁑ ( 2 ⁒ x - 1 ) shifted-Jacobi-polynomial-G 𝑛 𝑝 π‘ž π‘₯ 𝑛 Pochhammer 𝑛 𝑝 𝑛 Jacobi-polynomial-P 𝑝 π‘ž π‘ž 1 𝑛 2 π‘₯ 1 {\displaystyle{\displaystyle G_{n}\left(p,q,x\right)=\frac{n!}{{\left(n+p% \right)_{n}}}P^{(p-q,q-1)}_{n}\left(2x-1\right)}}
\shiftJacobipolyG{n}@{p}{q}{x} = \frac{n!}{\Pochhammersym{n+p}{n}}\JacobipolyP{p-q}{q-1}{n}@{2x-1}

JacobiP(n, p-q, q-1, 2*(x)-1)*((n)!)/pochhammer(n+p, n) = (factorial(n))/(pochhammer(n + p, n))*JacobiP(n, p - q, q - 1, 2*x - 1)
Error
Successful Missing Macro Error - -