Generalized Hypergeometric Functions & Meijer G -Function - 16.16 Transformations of Variables

From testwiki
Revision as of 17:18, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
16.16.E5 F 3 ( α , γ - α ; β , γ - β ; γ ; x , y ) = ( 1 - y ) α + β - γ F 1 2 ( α , β γ ; x + y - x y ) Appell-F-3 𝛼 𝛾 𝛼 𝛽 𝛾 𝛽 𝛾 𝑥 𝑦 superscript 1 𝑦 𝛼 𝛽 𝛾 Gauss-hypergeometric-F-as-2F1 𝛼 𝛽 𝛾 𝑥 𝑦 𝑥 𝑦 {\displaystyle{\displaystyle{F_{3}}\left(\alpha,\gamma-\alpha;\beta,\gamma-% \beta;\gamma;x,y\right)=(1-y)^{\alpha+\beta-\gamma}{{}_{2}F_{1}}\left({\alpha,% \beta\atop\gamma};x+y-xy\right)}}
\AppellF{3}@{\alpha}{\gamma-\alpha}{\beta}{\gamma-\beta}{\gamma}{x}{y} = (1-y)^{\alpha+\beta-\gamma}\genhyperF{2}{1}@@{\alpha,\beta}{\gamma}{x+y-xy}

Error
AppellF[3, , \[Alpha], \[Gamma]- \[Alpha], \[Beta], \[Gamma]- \[Beta]]*\[Gamma]*x*y == (1 - y)^(\[Alpha]+ \[Beta]- \[Gamma])* HypergeometricPFQ[{\[Alpha], \[Beta]}, {\[Gamma]}, x + y - x*y]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.33907796278424684, 2.1694931088262193], Times[Complex[-1.948557158514987, -1.1249999999999998], AppellF[3.0, Null, 1.5, Complex[-0.6339745962155613, 0.49999999999999994], 1.5, Complex[-0.6339745962155613, 0.49999999999999994]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[3.1592684418872854, 2.774129956365469], Times[Complex[1.1249999999999996, -1.948557158514987], AppellF[3.0, Null, 1.5, Complex[-1.9999999999999998, 0.8660254037844387], 1.5, Complex[-1.9999999999999998, 0.8660254037844387]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
16.16.E6 F 4 ( α , β ; γ , α + β - γ + 1 ; x ( 1 - y ) , y ( 1 - x ) ) = F 1 2 ( α , β γ ; x ) F 1 2 ( α , β α + β - γ + 1 ; y ) Appell-F-4 𝛼 𝛽 𝛾 𝛼 𝛽 𝛾 1 𝑥 1 𝑦 𝑦 1 𝑥 Gauss-hypergeometric-F-as-2F1 𝛼 𝛽 𝛾 𝑥 Gauss-hypergeometric-F-as-2F1 𝛼 𝛽 𝛼 𝛽 𝛾 1 𝑦 {\displaystyle{\displaystyle{F_{4}}\left(\alpha,\beta;\gamma,\alpha+\beta-% \gamma+1;x(1-y),y(1-x)\right)={{}_{2}F_{1}}\left({\alpha,\beta\atop\gamma};x% \right){{}_{2}F_{1}}\left({\alpha,\beta\atop\alpha+\beta-\gamma+1};y\right)}}
\AppellF{4}@{\alpha}{\beta}{\gamma}{\alpha+\beta-\gamma+1}{x(1-y)}{y(1-x)} = \genhyperF{2}{1}@@{\alpha,\beta}{\gamma}{x}\genhyperF{2}{1}@@{\alpha,\beta}{\alpha+\beta-\gamma+1}{y}

Error
AppellF[4, , \[Alpha], \[Beta], \[Gamma], \[Alpha]+ \[Beta]- \[Gamma]+ 1]*x*(1 - y)*y*(1 - x) == HypergeometricPFQ[{\[Alpha], \[Beta]}, {\[Gamma]}, x]*HypergeometricPFQ[{\[Alpha], \[Beta]}, {\[Alpha]+ \[Beta]- \[Gamma]+ 1}, y]
Missing Macro Error Failure - Skip - No test values generated