Generalized Hypergeometric Functions & Meijer G -Function - 16.8 Differential Equations

From testwiki
Revision as of 17:18, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
16.8.E4 z q D q + 1 w + j = 1 q z j - 1 ( α j z + β j ) D j w + α 0 w = 0 superscript 𝑧 𝑞 superscript 𝐷 𝑞 1 𝑤 superscript subscript 𝑗 1 𝑞 superscript 𝑧 𝑗 1 subscript 𝛼 𝑗 𝑧 subscript 𝛽 𝑗 superscript 𝐷 𝑗 𝑤 subscript 𝛼 0 𝑤 0 {\displaystyle{\displaystyle z^{q}D^{q+1}w+\sum_{j=1}^{q}z^{j-1}(\alpha_{j}z+% \beta_{j})D^{j}w+\alpha_{0}w=0}}
z^{q}D^{q+1}w+\sum_{j=1}^{q}z^{j-1}(\alpha_{j}z+\beta_{j})D^{j}w+\alpha_{0}w = 0
p q 𝑝 𝑞 {\displaystyle{\displaystyle p\leq q}}
(z)^(q)* (D)^(q + 1)* w + sum((z)^(j - 1)*(alpha[j]*z + beta[j])*(D)^(j)* w , j = 1..q)+ alpha[0]*w = 0
(z)^(q)* (D)^(q + 1)* w + Sum[(z)^(j - 1)*(Subscript[\[Alpha], j]*z + Subscript[\[Beta], j])*(D)^(j)* w , {j, 1, q}, GenerateConditions->None]+ Subscript[\[Alpha], 0]*w == 0
Skipped - no semantic math Skipped - no semantic math - -
16.8.E5 z q ( 1 - z ) D q + 1 w + j = 1 q z j - 1 ( α j z + β j ) D j w + α 0 w = 0 superscript 𝑧 𝑞 1 𝑧 superscript 𝐷 𝑞 1 𝑤 superscript subscript 𝑗 1 𝑞 superscript 𝑧 𝑗 1 subscript 𝛼 𝑗 𝑧 subscript 𝛽 𝑗 superscript 𝐷 𝑗 𝑤 subscript 𝛼 0 𝑤 0 {\displaystyle{\displaystyle z^{q}(1-z)D^{q+1}w+\sum_{j=1}^{q}z^{j-1}(\alpha_{% j}z+\beta_{j})D^{j}w+\alpha_{0}w=0}}
z^{q}(1-z)D^{q+1}w+\sum_{j=1}^{q}z^{j-1}(\alpha_{j}z+\beta_{j})D^{j}w+\alpha_{0}w = 0
p = q + 1 𝑝 𝑞 1 {\displaystyle{\displaystyle p=q+1}}
(z)^(q)*(1 - z)*(D)^(q + 1)* w + sum((z)^(j - 1)*(alpha[j]*z + beta[j])*(D)^(j)* w , j = 1..q)+ alpha[0]*w = 0
(z)^(q)*(1 - z)*(D)^(q + 1)* w + Sum[(z)^(j - 1)*(Subscript[\[Alpha], j]*z + Subscript[\[Beta], j])*(D)^(j)* w , {j, 1, q}, GenerateConditions->None]+ Subscript[\[Alpha], 0]*w == 0
Skipped - no semantic math Skipped - no semantic math - -