Bessel Functions - 10.37 Inequalities; Monotonicity

From testwiki
Revision as of 16:58, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.37.E1 | K ν ( z ) | < | K μ ( z ) | modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜇 𝑧 {\displaystyle{\displaystyle|K_{\nu}\left(z\right)|<|K_{\mu}\left(z\right)|}}
|\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|

abs(BesselK(nu, z)) < abs(BesselK(mu, z))
Abs[BesselK[\[Nu], z]] < Abs[BesselK[\[Mu], z]]
Failure Failure
Failed [204 / 300]
Result: .6496143723 < .6496143723
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 3.110500858 < 3.110500858
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [184 / 300]
Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data