Exponential, Logarithmic, Sine, and Cosine Integrals - 6.15 Sums

From testwiki
Revision as of 16:45, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.15.E1 n = 1 Ci ( π n ) = 1 2 ( ln 2 - γ ) superscript subscript 𝑛 1 cosine-integral 𝜋 𝑛 1 2 2 {\displaystyle{\displaystyle\sum_{n=1}^{\infty}\mathrm{Ci}\left(\pi n\right)=% \tfrac{1}{2}(\ln 2-\gamma)}}
\sum_{n=1}^{\infty}\cosint@{\pi n} = \tfrac{1}{2}(\ln@@{2}-\EulerConstant)

sum(Ci(Pi*n), n = 1..infinity) = (1)/(2)*(ln(2)- gamma)
Sum[CosIntegral[Pi*n], {n, 1, Infinity}, GenerateConditions->None] == Divide[1,2]*(Log[2]- EulerGamma)
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.05796575782920621, NSum[CosIntegral[Times[n, Pi]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}

6.15.E2 n = 1 si ( π n ) n = 1 2 π ( ln π - 1 ) superscript subscript 𝑛 1 shifted-sine-integral 𝜋 𝑛 𝑛 1 2 𝜋 𝜋 1 {\displaystyle{\displaystyle\sum_{n=1}^{\infty}\frac{\mathrm{si}\left(\pi n% \right)}{n}=\tfrac{1}{2}\pi(\ln\pi-1)}}
\sum_{n=1}^{\infty}\frac{\shiftsinint@{\pi n}}{n} = \tfrac{1}{2}\pi(\ln@@{\pi}-1)

sum((Ssi(Pi*n))/(n), n = 1..infinity) = (1)/(2)*Pi*(ln(Pi)- 1)
Sum[Divide[SinIntegral[Pi*n] - Pi/2,n], {n, 1, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*(Log[Pi]- 1)
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.22734117306968246, NSum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}

6.15.E3 n = 1 ( - 1 ) n Ci ( 2 π n ) = 1 - ln 2 - 1 2 γ superscript subscript 𝑛 1 superscript 1 𝑛 cosine-integral 2 𝜋 𝑛 1 2 1 2 {\displaystyle{\displaystyle\sum_{n=1}^{\infty}(-1)^{n}\mathrm{Ci}\left(2\pi n% \right)=1-\ln 2-\tfrac{1}{2}\gamma}}
\sum_{n=1}^{\infty}(-1)^{n}\cosint@{2\pi n} = 1-\ln@@{2}-\tfrac{1}{2}\EulerConstant

sum((- 1)^(n)* Ci(2*Pi*n), n = 1..infinity) = 1 - ln(2)-(1)/(2)*gamma
Sum[(- 1)^(n)* CosIntegral[2*Pi*n], {n, 1, Infinity}, GenerateConditions->None] == 1 - Log[2]-Divide[1,2]*EulerGamma
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.018244986989288337, NSum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}

6.15.E4 n = 1 ( - 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 - 1 ) superscript subscript 𝑛 1 superscript 1 𝑛 shifted-sine-integral 2 𝜋 𝑛 𝑛 𝜋 3 2 2 1 {\displaystyle{\displaystyle\sum_{n=1}^{\infty}(-1)^{n}\frac{\mathrm{si}\left(% 2\pi n\right)}{n}=\pi(\tfrac{3}{2}\ln 2-1)}}
\sum_{n=1}^{\infty}(-1)^{n}\frac{\shiftsinint@{2\pi n}}{n} = \pi(\tfrac{3}{2}\ln@@{2}-1)

sum((- 1)^(n)*(Ssi(2*Pi*n))/(n), n = 1..infinity) = Pi*((3)/(2)*ln(2)- 1)
Sum[(- 1)^(n)*Divide[SinIntegral[2*Pi*n] - Pi/2,n], {n, 1, Infinity}, GenerateConditions->None] == Pi*(Divide[3,2]*Log[2]- 1)
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.12478648186560967, NSum[Times[Power[-1, n], Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[2, n, Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}