Elementary Functions - 4.17 Special Values and Limits

From testwiki
Revision as of 16:34, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.17.E1 lim z 0 sin z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\sin z}{z}=1}}
\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1

limit((sin(z))/(z), z = 0) = 1
Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E2 lim z 0 tan z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\tan z}{z}=1}}
\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1

limit((tan(z))/(z), z = 0) = 1
Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E3 lim z 0 1 - cos z z 2 = 1 2 subscript 𝑧 0 1 𝑧 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{1-\cos z}{z^{2}}=\frac{1}{2}}}
\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}

limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]