DLMF:21.3.E3 (Q6871)

From testwiki
Revision as of 13:48, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:21.3.E3
No description defined

    Statements

    θ ( 𝐳 + 𝐦 1 + 𝛀 𝐦 2 | 𝛀 ) = e - 2 π i ( 1 2 𝐦 2 𝛀 𝐦 2 + 𝐦 2 𝐳 ) θ ( 𝐳 | 𝛀 ) , Riemann-theta 𝐳 subscript 𝐦 1 𝛀 subscript 𝐦 2 𝛀 superscript 𝑒 2 𝜋 𝑖 1 2 subscript 𝐦 2 𝛀 subscript 𝐦 2 subscript 𝐦 2 𝐳 Riemann-theta 𝐳 𝛀 {\displaystyle{\displaystyle\theta\left(\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{% {\Omega}}\mathbf{m}_{2}\middle|\boldsymbol{{\Omega}}\right)=e^{-2\pi i\left(% \frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf% {m}_{2}\cdot\mathbf{z}\right)}\theta\left(\mathbf{z}\middle|\boldsymbol{{% \Omega}}\right),}}
    0 references
    0 references
    θ ( 𝐳 | 𝛀 ) Riemann-theta 𝐳 𝛀 {\displaystyle{\displaystyle\theta\left(\NVar{\mathbf{z}}\middle|\NVar{% \boldsymbol{{\Omega}}}\right)}}
    C21.S2.E1.m2abdec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2adec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2adec
    0 references
    i imaginary-unit {\displaystyle{\displaystyle\mathrm{i}}}
    C1.S9.E1.m2adec
    0 references