DLMF:18.17.E13 (Q5754)

From testwiki
Revision as of 14:46, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.17.E13
No description defined

    Statements

    x 1 2 n ( x - 1 ) λ + μ - 1 2 Γ ( λ + μ + 1 2 ) C n ( λ + μ ) ( x - 1 2 ) C n ( λ + μ ) ( 1 ) = 1 x y 1 2 n ( y - 1 ) λ - 1 2 Γ ( λ + 1 2 ) C n ( λ ) ( y - 1 2 ) C n ( λ ) ( 1 ) ( x - y ) μ - 1 Γ ( μ ) d y , superscript 𝑥 1 2 𝑛 superscript 𝑥 1 𝜆 𝜇 1 2 Euler-Gamma 𝜆 𝜇 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝜇 𝑛 superscript 𝑥 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝜇 𝑛 1 superscript subscript 1 𝑥 superscript 𝑦 1 2 𝑛 superscript 𝑦 1 𝜆 1 2 Euler-Gamma 𝜆 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 superscript 𝑦 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 1 superscript 𝑥 𝑦 𝜇 1 Euler-Gamma 𝜇 𝑦 {\displaystyle{\displaystyle\frac{x^{\frac{1}{2}n}(x-1)^{\lambda+\mu-\frac{1}{% 2}}}{\Gamma\left(\lambda+\mu+\tfrac{1}{2}\right)}\frac{C^{(\lambda+\mu)}_{n}% \left(x^{-\frac{1}{2}}\right)}{C^{(\lambda+\mu)}_{n}\left(1\right)}=\int_{1}^{% x}\frac{y^{\frac{1}{2}n}(y-1)^{\lambda-\frac{1}{2}}}{\Gamma\left(\lambda+% \tfrac{1}{2}\right)}\frac{C^{(\lambda)}_{n}\left(y^{-\frac{1}{2}}\right)}{C^{(% \lambda)}_{n}\left(1\right)}\frac{(x-y)^{\mu-1}}{\Gamma\left(\mu\right)}% \mathrm{d}y,}}
    0 references
    0 references
    x > 1 𝑥 1 {\displaystyle{\displaystyle x>1}}
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2aedec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1aldec
    0 references