DLMF:18.10.E1 (Q5625)

From testwiki
Revision as of 15:06, 29 December 2019 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.10.E1
No description defined

    Statements

    P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) - 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ - cos θ ) - α + 1 2 d ϕ , Jacobi-polynomial-P 𝛼 𝛼 𝑛 𝜃 Jacobi-polynomial-P 𝛼 𝛼 𝑛 1 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 𝜃 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 1 superscript 2 𝛼 1 2 Euler-Gamma 𝛼 1 superscript 𝜋 1 2 Euler-Gamma 𝛼 1 2 superscript 𝜃 2 𝛼 superscript subscript 0 𝜃 𝑛 𝛼 1 2 italic-ϕ superscript italic-ϕ 𝜃 𝛼 1 2 italic-ϕ {\displaystyle{\displaystyle\frac{P^{(\alpha,\alpha)}_{n}\left(\cos\theta% \right)}{P^{(\alpha,\alpha)}_{n}\left(1\right)}=\frac{C^{(\alpha+\frac{1}{2})}% _{n}\left(\cos\theta\right)}{C^{(\alpha+\frac{1}{2})}_{n}\left(1\right)}=\frac% {2^{\alpha+\frac{1}{2}}\Gamma\left(\alpha+1\right)}{\pi^{\frac{1}{2}}\Gamma% \left(\alpha+\frac{1}{2}\right)}(\sin\theta)^{-2\alpha}\int_{0}^{\theta}\frac{% \cos\left((n+\alpha+\tfrac{1}{2})\phi\right)}{(\cos\phi-\cos\theta)^{-\alpha+% \frac{1}{2}}}\mathrm{d}\phi,}}
    0 references
    0 references