Functions of Matrix Argument - 36.2 Catastrophes and Canonical Integrals

From testwiki
Revision as of 12:15, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
36.2#Ex2 F + ⁒ ( 𝐱 ) = ∫ 0 ∞ cos ⁑ ( r ⁒ y ⁒ exp ⁑ ( + i ⁒ Ο€ 6 ) ) ⁒ exp ⁑ ( 2 ⁒ i ⁒ r 2 ⁒ z ⁒ exp ⁑ ( + i ⁒ Ο€ 3 ) ) ⁒ Ai ⁑ ( 3 2 / 3 ⁒ r 2 + 3 - 1 / 3 ⁒ exp ⁑ ( - i ⁒ Ο€ 3 ) ⁒ ( 1 3 ⁒ z 2 - x ) ) ⁒ d r subscript F 𝐱 superscript subscript 0 π‘Ÿ 𝑦 𝑖 πœ‹ 6 2 𝑖 superscript π‘Ÿ 2 𝑧 𝑖 πœ‹ 3 Airy-Ai superscript 3 2 3 superscript π‘Ÿ 2 superscript 3 1 3 𝑖 πœ‹ 3 1 3 superscript 𝑧 2 π‘₯ π‘Ÿ {\displaystyle{\displaystyle\mathrm{F}_{+}(\mathbf{x})=\int_{0}^{\infty}\cos% \left(ry\exp\left(+i\dfrac{\pi}{6}\right)\right)\exp\left(2ir^{2}z\exp\left(+i% \dfrac{\pi}{3}\right)\right)\mathrm{Ai}\left(3^{2/3}r^{2}+3^{-1/3}\exp\left(-i% \dfrac{\pi}{3}\right)\left(\tfrac{1}{3}z^{2}-x\right)\right)\mathrm{d}r}}
\mathrm{F}_{+}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{+ i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{+ i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{- i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}

F[+](x) = int(cos(r*y*exp(+ I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(+ I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(- I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)
Subscript[F, +][x] == Integrate[Cos[r*y*Exp[+ I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[+ I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[- I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]
Error Failure - Error
36.2#Ex2 F - ⁒ ( 𝐱 ) = ∫ 0 ∞ cos ⁑ ( r ⁒ y ⁒ exp ⁑ ( - i ⁒ Ο€ 6 ) ) ⁒ exp ⁑ ( 2 ⁒ i ⁒ r 2 ⁒ z ⁒ exp ⁑ ( - i ⁒ Ο€ 3 ) ) ⁒ Ai ⁑ ( 3 2 / 3 ⁒ r 2 + 3 - 1 / 3 ⁒ exp ⁑ ( + i ⁒ Ο€ 3 ) ⁒ ( 1 3 ⁒ z 2 - x ) ) ⁒ d r subscript F 𝐱 superscript subscript 0 π‘Ÿ 𝑦 𝑖 πœ‹ 6 2 𝑖 superscript π‘Ÿ 2 𝑧 𝑖 πœ‹ 3 Airy-Ai superscript 3 2 3 superscript π‘Ÿ 2 superscript 3 1 3 𝑖 πœ‹ 3 1 3 superscript 𝑧 2 π‘₯ π‘Ÿ {\displaystyle{\displaystyle\mathrm{F}_{-}(\mathbf{x})=\int_{0}^{\infty}\cos% \left(ry\exp\left(-i\dfrac{\pi}{6}\right)\right)\exp\left(2ir^{2}z\exp\left(-i% \dfrac{\pi}{3}\right)\right)\mathrm{Ai}\left(3^{2/3}r^{2}+3^{-1/3}\exp\left(+i% \dfrac{\pi}{3}\right)\left(\tfrac{1}{3}z^{2}-x\right)\right)\mathrm{d}r}}
\mathrm{F}_{-}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{- i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{- i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{+ i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}

F[-](x) = int(cos(r*y*exp(- I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(- I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(+ I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)
Subscript[F, -][x] == Integrate[Cos[r*y*Exp[- I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[- I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[+ I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]
Error Failure - Error
36.2.E14 P ⁒ ( x 2 , x 1 ) = ∫ - ∞ ∞ exp ⁑ ( i ⁒ ( t 4 + x 2 ⁒ t 2 + x 1 ⁒ t ) ) ⁒ d t 𝑃 subscript π‘₯ 2 subscript π‘₯ 1 superscript subscript imaginary-unit superscript 𝑑 4 subscript π‘₯ 2 superscript 𝑑 2 subscript π‘₯ 1 𝑑 𝑑 {\displaystyle{\displaystyle P(x_{2},x_{1})=\int_{-\infty}^{\infty}\exp\left(% \mathrm{i}(t^{4}+x_{2}t^{2}+x_{1}t)\right)\mathrm{d}t}}
P(x_{2},x_{1}) = \int_{-\infty}^{\infty}\exp@{\iunit(t^{4}+x_{2}t^{2}+x_{1}t)}\diff{t}

P(x[2], x[1]) = int(exp(I*((t)^(4)+ x[2]*(t)^(2)+ x[1]*t)), t = - infinity..infinity)
P[Subscript[x, 2], Subscript[x, 1]] == Integrate[Exp[I*((t)^(4)+ Subscript[x, 2]*(t)^(2)+ Subscript[x, 1]*t)], {t, - Infinity, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Error
36.2#Ex10 1 3 ⁒ Ο€ ⁒ Ξ“ ⁑ ( 1 6 ) = 3.28868 1 3 πœ‹ Euler-Gamma 1 6 3.28868 {\displaystyle{\displaystyle\tfrac{1}{3}\sqrt{\pi}\Gamma\left(\tfrac{1}{6}% \right)=3.28868}}
\tfrac{1}{3}\sqrt{\pi}\EulerGamma@{\tfrac{1}{6}} = 3.28868

(1)/(3)*sqrt(Pi)*GAMMA((1)/(6)) = 3.28868
Divide[1,3]*Sqrt[Pi]*Gamma[Divide[1,6]] == 3.28868
Failure Failure Successful [Tested: 0] Successful [Tested: 1]
36.2#Ex11 1 3 ⁒ Ξ“ 2 ⁑ ( 1 3 ) = 2.39224 1 3 Euler-Gamma 2 1 3 2.39224 {\displaystyle{\displaystyle\tfrac{1}{3}{\Gamma^{2}}\left(\tfrac{1}{3}\right)=% 2.39224}}
\tfrac{1}{3}\EulerGamma^{2}@{\tfrac{1}{3}} = 2.39224

(1)/(3)*(GAMMA((1)/(3)))^(2) = 2.39224
Divide[1,3]*(Gamma[Divide[1,3]])^(2) == 2.39224
Failure Failure Successful [Tested: 0] Successful [Tested: 1]