q -Hypergeometric and Related Functions - 17.13 Integrals

From testwiki
Revision as of 11:44, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
17.13.E3 0 t α - 1 ( - t q α + β ; q ) ( - t ; q ) d t = Γ ( α ) Γ ( 1 - α ) Γ q ( β ) Γ q ( 1 - α ) Γ q ( α + β ) superscript subscript 0 superscript 𝑡 𝛼 1 q-Pochhammer-symbol 𝑡 superscript 𝑞 𝛼 𝛽 𝑞 q-Pochhammer-symbol 𝑡 𝑞 𝑡 Euler-Gamma 𝛼 Euler-Gamma 1 𝛼 q-Gamma 𝑞 𝛽 q-Gamma 𝑞 1 𝛼 q-Gamma 𝑞 𝛼 𝛽 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\alpha-1}\frac{\left(-tq^{% \alpha+\beta};q\right)_{\infty}}{\left(-t;q\right)_{\infty}}\mathrm{d}t=\frac{% \Gamma\left(\alpha\right)\Gamma\left(1-\alpha\right)\Gamma_{q}\left(\beta% \right)}{\Gamma_{q}\left(1-\alpha\right)\Gamma_{q}\left(\alpha+\beta\right)}}}
\int_{0}^{\infty}t^{\alpha-1}\frac{\qPochhammer{-tq^{\alpha+\beta}}{q}{\infty}}{\qPochhammer{-t}{q}{\infty}}\diff{t} = \frac{\EulerGamma@{\alpha}\EulerGamma@{1-\alpha}\qGamma{q}@{\beta}}{\qGamma{q}@{1-\alpha}\qGamma{q}@{\alpha+\beta}}
( α ) > 0 , ( 1 - α ) > 0 formulae-sequence 𝛼 0 1 𝛼 0 {\displaystyle{\displaystyle\Re(\alpha)>0,\Re(1-\alpha)>0}}
int((t)^(alpha - 1)*(QPochhammer(- t*(q)^(alpha + beta), q, infinity))/(QPochhammer(- t, q, infinity)), t = 0..infinity) = (GAMMA(alpha)*GAMMA(1 - alpha)*QGAMMA(q, beta))/(QGAMMA(q, 1 - alpha)*QGAMMA(q, alpha + beta))
Integrate[(t)^(\[Alpha]- 1)*Divide[QPochhammer[- t*(q)^(\[Alpha]+ \[Beta]), q, Infinity],QPochhammer[- t, q, Infinity]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Alpha]]*Gamma[1 - \[Alpha]]*QGamma[\[Beta],q],QGamma[1 - \[Alpha],q]*QGamma[\[Alpha]+ \[Beta],q]]
Error Failure -
Failed [26 / 30]
Result: Plus[NIntegrate[Times[Power[t, -0.5], Power[QPochhammer[Times[-1, t], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], DirectedInfinity[1]], -1], QPochhammer[Times[Complex[-0.5000000000000001, -0.8660254037844386], t], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], DirectedInfinity[1]]]
Test Values: {t, 0, DirectedInfinity[1]}], Times[-3.1415926535897936, Power[QGamma[0.5, Complex[0.8660254037844387, 0.49999999999999994]], -1], QGamma[1.5, Complex[0.8660254037844387, 0.49999999999999994]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5], Rule[β, 1.5]}

Result: Plus[-3.1415926535897936, NIntegrate[Times[Power[t, -0.5], Power[QPochhammer[Times[-1, t], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], DirectedInfinity[1]], -1], QPochhammer[Times[Complex[-0.8660254037844387, -0.49999999999999994], t], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], DirectedInfinity[1]]]
Test Values: {t, 0, DirectedInfinity[1]}]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5], Rule[β, 0.5]}

... skip entries to safe data