Elementary Functions - 5.2 Definitions

From testwiki
Revision as of 11:12, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.2.E1 Γ ( z ) = 0 e - t t z - 1 d t Euler-Gamma 𝑧 superscript subscript 0 superscript 𝑒 𝑡 superscript 𝑡 𝑧 1 𝑡 {\displaystyle{\displaystyle\Gamma\left(z\right)=\int_{0}^{\infty}e^{-t}t^{z-1% }\mathrm{d}t}}
\EulerGamma@{z} = \int_{0}^{\infty}e^{-t}t^{z-1}\diff{t}
z > 0 𝑧 0 {\displaystyle{\displaystyle\Re z>0}}
GAMMA(z) = int(exp(- t)*(t)^(z - 1), t = 0..infinity)
Gamma[z] == Integrate[Exp[- t]*(t)^(z - 1), {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 5]
5.2.E2 ψ ( z ) = Γ ( z ) / Γ ( z ) digamma 𝑧 diffop Euler-Gamma 1 𝑧 Euler-Gamma 𝑧 {\displaystyle{\displaystyle\psi\left(z\right)=\Gamma'\left(z\right)/\Gamma% \left(z\right)}}
\digamma@{z} = \EulerGamma'@{z}/\EulerGamma@{z}
z > 0 𝑧 0 {\displaystyle{\displaystyle\Re z>0}}
Psi(z) = diff( GAMMA(z), z$(1) )/GAMMA(z)
PolyGamma[z] == D[Gamma[z], {z, 1}]/Gamma[z]
Successful Successful - Successful [Tested: 1]
5.2#Ex1 ( a ) 0 = 1 Pochhammer 𝑎 0 1 {\displaystyle{\displaystyle{\left(a\right)_{0}}=1}}
\Pochhammersym{a}{0} = 1

pochhammer(a, 0) = 1
Pochhammer[a, 0] == 1
Successful Successful - Successful [Tested: 6]
5.2.E5 ( a ) n = Γ ( a + n ) / Γ ( a ) Pochhammer 𝑎 𝑛 Euler-Gamma 𝑎 𝑛 Euler-Gamma 𝑎 {\displaystyle{\displaystyle{\left(a\right)_{n}}=\Gamma\left(a+n\right)/\Gamma% \left(a\right)}}
\Pochhammersym{a}{n} = \EulerGamma@{a+n}/\EulerGamma@{a}
( a + n ) > 0 , a > 0 formulae-sequence 𝑎 𝑛 0 𝑎 0 {\displaystyle{\displaystyle\Re(a+n)>0,\Re a>0}}
pochhammer(a, n) = GAMMA(a + n)/GAMMA(a)
Pochhammer[a, n] == Gamma[a + n]/Gamma[a]
Successful Successful - Successful [Tested: 3]
5.2.E6 ( - a ) n = ( - 1 ) n ( a - n + 1 ) n Pochhammer 𝑎 𝑛 superscript 1 𝑛 Pochhammer 𝑎 𝑛 1 𝑛 {\displaystyle{\displaystyle{\left(-a\right)_{n}}=(-1)^{n}{\left(a-n+1\right)_% {n}}}}
\Pochhammersym{-a}{n} = (-1)^{n}\Pochhammersym{a-n+1}{n}

pochhammer(- a, n) = (- 1)^(n)* pochhammer(a - n + 1, n)
Pochhammer[- a, n] == (- 1)^(n)* Pochhammer[a - n + 1, n]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
5.2#Ex3 ( a ) 2 n = 2 2 n ( a 2 ) n ( a + 1 2 ) n Pochhammer 𝑎 2 𝑛 superscript 2 2 𝑛 Pochhammer 𝑎 2 𝑛 Pochhammer 𝑎 1 2 𝑛 {\displaystyle{\displaystyle{\left(a\right)_{2n}}=2^{2n}{\left(\frac{a}{2}% \right)_{n}}{\left(\frac{a+1}{2}\right)_{n}}}}
\Pochhammersym{a}{2n} = 2^{2n}\Pochhammersym{\frac{a}{2}}{n}\Pochhammersym{\frac{a+1}{2}}{n}

pochhammer(a, 2*n) = (2)^(2*n)* pochhammer((a)/(2), n)*pochhammer((a + 1)/(2), n)
Pochhammer[a, 2*n] == (2)^(2*n)* Pochhammer[Divide[a,2], n]*Pochhammer[Divide[a + 1,2], n]
Successful Successful - Successful [Tested: 18]
5.2#Ex4 ( a ) 2 n + 1 = 2 2 n + 1 ( a 2 ) n + 1 ( a + 1 2 ) n Pochhammer 𝑎 2 𝑛 1 superscript 2 2 𝑛 1 Pochhammer 𝑎 2 𝑛 1 Pochhammer 𝑎 1 2 𝑛 {\displaystyle{\displaystyle{\left(a\right)_{2n+1}}=2^{2n+1}{\left(\frac{a}{2}% \right)_{n+1}}{\left(\frac{a+1}{2}\right)_{n}}}}
\Pochhammersym{a}{2n+1} = 2^{2n+1}\Pochhammersym{\frac{a}{2}}{n+1}\Pochhammersym{\frac{a+1}{2}}{n}

pochhammer(a, 2*n + 1) = (2)^(2*n + 1)* pochhammer((a)/(2), n + 1)*pochhammer((a + 1)/(2), n)
Pochhammer[a, 2*n + 1] == (2)^(2*n + 1)* Pochhammer[Divide[a,2], n + 1]*Pochhammer[Divide[a + 1,2], n]
Successful Successful - Successful [Tested: 18]