DLMF:10.27.E5 (Q3495)

From testwiki
Revision as of 12:35, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:10.27.E5
No description defined

    Statements

    K n ( z ) = ( - 1 ) n - 1 2 ( I ν ( z ) ν | ν = n + I ν ( z ) ν | ν = - n ) , modified-Bessel-second-kind 𝑛 𝑧 superscript 1 𝑛 1 2 evaluated-at partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 𝜈 𝑛 evaluated-at partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 𝜈 𝑛 {\displaystyle{\displaystyle K_{n}\left(z\right)=\frac{(-1)^{n-1}}{2}\*\left(% \left.\frac{\partial I_{\nu}\left(z\right)}{\partial\nu}\right|_{\nu=n}+\left.% \frac{\partial I_{\nu}\left(z\right)}{\partial\nu}\right|_{\nu=-n}\right),}}
    0 references
    0 references
    n = 0 , ± 1 , ± 2 , 𝑛 0 plus-or-minus 1 plus-or-minus 2 {\displaystyle{\displaystyle n=0,\pm 1,\pm 2,\ldots}}
    0 references
    I ν ( z ) modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{\NVar{\nu}}\left(\NVar{z}\right)}}
    C10.S25.E2.m2acdec
    0 references
    K ν ( z ) modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{\NVar{\nu}}\left(\NVar{z}\right)}}
    C10.S25.E3.m2acdec
    0 references
    f x partial-derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\partial\NVar{f}}{\partial\NVar{x}}}}
    C1.S5.E3.m4adec
    0 references
    x 𝑥 {\displaystyle{\displaystyle\partial\NVar{x}}}
    C1.S5.E3.m2adec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C10.S1.XMD2.m1adec
    0 references