test: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 4: Line 4:
|-
|-
| [https://dlmf.nist.gov/1.2.E1 1.2.E1] || [[Item:Q30|<math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 80%;" inline>\binom{n}{k} = \frac{n!}{(n-k)!k!}</syntaxhighlight> || <math></math> || <syntaxhighlight>binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/1.2.E1 1.2.E1] || [[Item:Q30|<math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 80%;" inline>\binom{n}{k} = \frac{n!}{(n-k)!k!}</syntaxhighlight> || <math></math> || <syntaxhighlight>binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/1.5.E4 1.5.E4] || [[Item:Q121|<math>\pderiv{f}{y} = D_{y}f</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{f}{y} = D_{y}f</syntaxhighlight> || <math></math> || <syntaxhighlight>diff(f, y) = D[y]*f</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[f, y] == Subscript[D, y]*f</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight>[[-.5000000004-.8660254040*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight>.8660254040-.5000000004*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight>-.8660254040+.5000000004*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight>.5000000004+.8660254040*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data<br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><code>{Complex[-0.5000000000000001, -0.8660254037844386] <- {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[y, -1.5], Rule[Subscript[D, y], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</code><br><code>Complex[0.8660254037844387, -0.49999999999999994] <- {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[y, -1.5], Rule[Subscript[D, y], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</code><br></div></div>
|-
|-
|}
|}

Revision as of 15:52, 17 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
1.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n}{k} = \frac{n!}{(n-k)!k!}}
\binom{n}{k} = \frac{n!}{(n-k)!k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))
Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]
Successful Successful - Successful [Tested: 9]
1.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{f}{y} = D_{y}f}
\pderiv{f}{y} = D_{y}f
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff(f, y) = D[y]*f
D[f, y] == Subscript[D, y]*f
Failure Failure
Failed [300 / 300]
[[-.5000000004-.8660254040*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = 1/2*3^(1/2)+1/2*I}

.8660254040-.5000000004*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = -1/2+1/2*I*3^(1/2)}

-.8660254040+.5000000004*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = 1/2-1/2*I*3^(1/2)}

.5000000004+.8660254040*I <- {f = 1/2*3^(1/2)+1/2*I, y = -1.5, D[y] = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
{Complex[-0.5000000000000001, -0.8660254037844386] <- {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[y, -1.5], Rule[Subscript[D, y], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.8660254037844387, -0.49999999999999994] <- {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[y, -1.5], Rule[Subscript[D, y], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}