29.15: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E5 29.15.E5] || [[Item:Q8750|<math>\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{n}A_{2p}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{n}A_{2p}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*(A[0])^(2)+ sum((A[2*p])^(2), p = 1..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*(Subscript[A, 0])^(2)+ Sum[(Subscript[A, 2*p])^(2), {p, 1, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E5 29.15.E5] || <math qid="Q8750">\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{n}A_{2p}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{n}A_{2p}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*(A[0])^(2)+ sum((A[2*p])^(2), p = 1..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*(Subscript[A, 0])^(2)+ Sum[(Subscript[A, 2*p])^(2), {p, 1, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E6 29.15.E6] || [[Item:Q8751|<math>\tfrac{1}{2}A_{0}+\sum_{p=1}^{n}A_{2p} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}+\sum_{p=1}^{n}A_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*A[0]+ sum(A[2*p], p = 1..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[A, 0]+ Sum[Subscript[A, 2*p], {p, 1, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E6 29.15.E6] || <math qid="Q8751">\tfrac{1}{2}A_{0}+\sum_{p=1}^{n}A_{2p} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}+\sum_{p=1}^{n}A_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*A[0]+ sum(A[2*p], p = 1..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[A, 0]+ Sum[Subscript[A, 2*p], {p, 1, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E10 29.15.E10] || [[Item:Q8755|<math>\sum_{p=0}^{n}A_{2p+1}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}A_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((A[2*p + 1])^(2), p = 0..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[A, 2*p + 1])^(2), {p, 0, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E10 29.15.E10] || <math qid="Q8755">\sum_{p=0}^{n}A_{2p+1}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}A_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((A[2*p + 1])^(2), p = 0..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[A, 2*p + 1])^(2), {p, 0, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E11 29.15.E11] || [[Item:Q8756|<math>\sum_{p=0}^{n}A_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}A_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(A[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[A, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E11 29.15.E11] || <math qid="Q8756">\sum_{p=0}^{n}A_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}A_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(A[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[A, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E15 29.15.E15] || [[Item:Q8760|<math>\sum_{p=0}^{n}B_{2p+1}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}B_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p + 1])^(2), p = 0..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p + 1])^(2), {p, 0, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E15 29.15.E15] || <math qid="Q8760">\sum_{p=0}^{n}B_{2p+1}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}B_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p + 1])^(2), p = 0..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p + 1])^(2), {p, 0, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E16 29.15.E16] || [[Item:Q8761|<math>\sum_{p=0}^{n}(2p+1)B_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+1)B_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*B[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[B, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E16 29.15.E16] || <math qid="Q8761">\sum_{p=0}^{n}(2p+1)B_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+1)B_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*B[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[B, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E20 29.15.E20] || [[Item:Q8765|<math>\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{n}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{n-1}C_{2p}C_{2p+2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{n}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{n-1}C_{2p}C_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*((1)/(2)*(C[0])^(2)+ sum((C[2*p])^(2), p = 1..n))-(1)/(2)*(k)^(2)* sum(C[2*p]*C[2*p + 2], p = 0..n - 1) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*(Divide[1,2]*(Subscript[C, 0])^(2)+ Sum[(Subscript[C, 2*p])^(2), {p, 1, n}, GenerateConditions->None])-Divide[1,2]*(k)^(2)* Sum[Subscript[C, 2*p]*Subscript[C, 2*p + 2], {p, 0, n - 1}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E20 29.15.E20] || <math qid="Q8765">\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{n}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{n-1}C_{2p}C_{2p+2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{n}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{n-1}C_{2p}C_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*((1)/(2)*(C[0])^(2)+ sum((C[2*p])^(2), p = 1..n))-(1)/(2)*(k)^(2)* sum(C[2*p]*C[2*p + 2], p = 0..n - 1) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*(Divide[1,2]*(Subscript[C, 0])^(2)+ Sum[(Subscript[C, 2*p])^(2), {p, 1, n}, GenerateConditions->None])-Divide[1,2]*(k)^(2)* Sum[Subscript[C, 2*p]*Subscript[C, 2*p + 2], {p, 0, n - 1}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E21 29.15.E21] || [[Item:Q8766|<math>\tfrac{1}{2}C_{0}+\sum_{p=1}^{n}C_{2p} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}C_{0}+\sum_{p=1}^{n}C_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*C[0]+ sum(C[2*p], p = 1..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[C, 0]+ Sum[Subscript[C, 2*p], {p, 1, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E21 29.15.E21] || <math qid="Q8766">\tfrac{1}{2}C_{0}+\sum_{p=1}^{n}C_{2p} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}C_{0}+\sum_{p=1}^{n}C_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*C[0]+ sum(C[2*p], p = 1..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[C, 0]+ Sum[Subscript[C, 2*p], {p, 1, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E25 29.15.E25] || [[Item:Q8770|<math>\sum_{p=0}^{n}B_{2p+2}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}B_{2p+2}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p + 2])^(2), p = 0..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p + 2])^(2), {p, 0, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E25 29.15.E25] || <math qid="Q8770">\sum_{p=0}^{n}B_{2p+2}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}B_{2p+2}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p + 2])^(2), p = 0..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p + 2])^(2), {p, 0, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E26 29.15.E26] || [[Item:Q8771|<math>\sum_{p=0}^{n}(2p+2)B_{2p+2} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+2)B_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*B[2*p + 2], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[B, 2*p + 2], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E26 29.15.E26] || <math qid="Q8771">\sum_{p=0}^{n}(2p+2)B_{2p+2} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+2)B_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*B[2*p + 2], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[B, 2*p + 2], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E31 29.15.E31] || [[Item:Q8776|<math>\sum_{p=0}^{n}C_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}C_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(C[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[C, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E31 29.15.E31] || <math qid="Q8776">\sum_{p=0}^{n}C_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}C_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(C[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[C, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E36 29.15.E36] || [[Item:Q8781|<math>\sum_{p=0}^{n}(2p+1)D_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+1)D_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*D[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[D, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E36 29.15.E36] || <math qid="Q8781">\sum_{p=0}^{n}(2p+1)D_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+1)D_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*D[2*p + 1], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[D, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E40 29.15.E40] || [[Item:Q8785|<math>\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=0}^{n}D_{2p+2}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{n}D_{2p}D_{2p+2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=0}^{n}D_{2p+2}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{n}D_{2p}D_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*sum((D[2*p + 2])^(2), p = 0..n)-(1)/(2)*(k)^(2)* sum(D[2*p]*D[2*p + 2], p = 1..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*Sum[(Subscript[D, 2*p + 2])^(2), {p, 0, n}, GenerateConditions->None]-Divide[1,2]*(k)^(2)* Sum[Subscript[D, 2*p]*Subscript[D, 2*p + 2], {p, 1, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E40 29.15.E40] || <math qid="Q8785">\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=0}^{n}D_{2p+2}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{n}D_{2p}D_{2p+2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=0}^{n}D_{2p+2}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{n}D_{2p}D_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*sum((D[2*p + 2])^(2), p = 0..n)-(1)/(2)*(k)^(2)* sum(D[2*p]*D[2*p + 2], p = 1..n) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*Sum[(Subscript[D, 2*p + 2])^(2), {p, 0, n}, GenerateConditions->None]-Divide[1,2]*(k)^(2)* Sum[Subscript[D, 2*p]*Subscript[D, 2*p + 2], {p, 1, n}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.15.E41 29.15.E41] || [[Item:Q8786|<math>\sum_{p=0}^{n}(2p+2)D_{2p+2} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+2)D_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*D[2*p + 2], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[D, 2*p + 2], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.15.E41 29.15.E41] || <math qid="Q8786">\sum_{p=0}^{n}(2p+2)D_{2p+2} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{n}(2p+2)D_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*D[2*p + 2], p = 0..n) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[D, 2*p + 2], {p, 0, n}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 12:09, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
29.15.E5 1 2 A 0 2 + p = 1 n A 2 p 2 = 1 1 2 superscript subscript 𝐴 0 2 superscript subscript 𝑝 1 𝑛 superscript subscript 𝐴 2 𝑝 2 1 {\displaystyle{\displaystyle\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{n}A_{2p}^{2}=1}}
\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{n}A_{2p}^{2} = 1

(1)/(2)*(A[0])^(2)+ sum((A[2*p])^(2), p = 1..n) = 1
Divide[1,2]*(Subscript[A, 0])^(2)+ Sum[(Subscript[A, 2*p])^(2), {p, 1, n}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.15.E6 1 2 A 0 + p = 1 n A 2 p > 0 1 2 subscript 𝐴 0 superscript subscript 𝑝 1 𝑛 subscript 𝐴 2 𝑝 0 {\displaystyle{\displaystyle\tfrac{1}{2}A_{0}+\sum_{p=1}^{n}A_{2p}>0}}
\tfrac{1}{2}A_{0}+\sum_{p=1}^{n}A_{2p} > 0

(1)/(2)*A[0]+ sum(A[2*p], p = 1..n) > 0
Divide[1,2]*Subscript[A, 0]+ Sum[Subscript[A, 2*p], {p, 1, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.15.E10 p = 0 n A 2 p + 1 2 = 1 superscript subscript 𝑝 0 𝑛 superscript subscript 𝐴 2 𝑝 1 2 1 {\displaystyle{\displaystyle\sum_{p=0}^{n}A_{2p+1}^{2}=1}}
\sum_{p=0}^{n}A_{2p+1}^{2} = 1

sum((A[2*p + 1])^(2), p = 0..n) = 1
Sum[(Subscript[A, 2*p + 1])^(2), {p, 0, n}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.15.E11 p = 0 n A 2 p + 1 > 0 superscript subscript 𝑝 0 𝑛 subscript 𝐴 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{n}A_{2p+1}>0}}
\sum_{p=0}^{n}A_{2p+1} > 0

sum(A[2*p + 1], p = 0..n) > 0
Sum[Subscript[A, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.15.E15 p = 0 n B 2 p + 1 2 = 1 superscript subscript 𝑝 0 𝑛 superscript subscript 𝐵 2 𝑝 1 2 1 {\displaystyle{\displaystyle\sum_{p=0}^{n}B_{2p+1}^{2}=1}}
\sum_{p=0}^{n}B_{2p+1}^{2} = 1

sum((B[2*p + 1])^(2), p = 0..n) = 1
Sum[(Subscript[B, 2*p + 1])^(2), {p, 0, n}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.15.E16 p = 0 n ( 2 p + 1 ) B 2 p + 1 > 0 superscript subscript 𝑝 0 𝑛 2 𝑝 1 subscript 𝐵 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{n}(2p+1)B_{2p+1}>0}}
\sum_{p=0}^{n}(2p+1)B_{2p+1} > 0

sum((2*p + 1)*B[2*p + 1], p = 0..n) > 0
Sum[(2*p + 1)*Subscript[B, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.15.E20 ( 1 - 1 2 k 2 ) ( 1 2 C 0 2 + p = 1 n C 2 p 2 ) - 1 2 k 2 p = 0 n - 1 C 2 p C 2 p + 2 = 1 1 1 2 superscript 𝑘 2 1 2 superscript subscript 𝐶 0 2 superscript subscript 𝑝 1 𝑛 superscript subscript 𝐶 2 𝑝 2 1 2 superscript 𝑘 2 superscript subscript 𝑝 0 𝑛 1 subscript 𝐶 2 𝑝 subscript 𝐶 2 𝑝 2 1 {\displaystyle{\displaystyle\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}% C_{0}^{2}+\sum_{p=1}^{n}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{n-1}C_{% 2p}C_{2p+2}=1}}
\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{n}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{n-1}C_{2p}C_{2p+2} = 1

(1 -(1)/(2)*(k)^(2))*((1)/(2)*(C[0])^(2)+ sum((C[2*p])^(2), p = 1..n))-(1)/(2)*(k)^(2)* sum(C[2*p]*C[2*p + 2], p = 0..n - 1) = 1
(1 -Divide[1,2]*(k)^(2))*(Divide[1,2]*(Subscript[C, 0])^(2)+ Sum[(Subscript[C, 2*p])^(2), {p, 1, n}, GenerateConditions->None])-Divide[1,2]*(k)^(2)* Sum[Subscript[C, 2*p]*Subscript[C, 2*p + 2], {p, 0, n - 1}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.15.E21 1 2 C 0 + p = 1 n C 2 p > 0 1 2 subscript 𝐶 0 superscript subscript 𝑝 1 𝑛 subscript 𝐶 2 𝑝 0 {\displaystyle{\displaystyle\tfrac{1}{2}C_{0}+\sum_{p=1}^{n}C_{2p}>0}}
\tfrac{1}{2}C_{0}+\sum_{p=1}^{n}C_{2p} > 0

(1)/(2)*C[0]+ sum(C[2*p], p = 1..n) > 0
Divide[1,2]*Subscript[C, 0]+ Sum[Subscript[C, 2*p], {p, 1, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.15.E25 p = 0 n B 2 p + 2 2 = 1 superscript subscript 𝑝 0 𝑛 superscript subscript 𝐵 2 𝑝 2 2 1 {\displaystyle{\displaystyle\sum_{p=0}^{n}B_{2p+2}^{2}=1}}
\sum_{p=0}^{n}B_{2p+2}^{2} = 1

sum((B[2*p + 2])^(2), p = 0..n) = 1
Sum[(Subscript[B, 2*p + 2])^(2), {p, 0, n}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.15.E26 p = 0 n ( 2 p + 2 ) B 2 p + 2 > 0 superscript subscript 𝑝 0 𝑛 2 𝑝 2 subscript 𝐵 2 𝑝 2 0 {\displaystyle{\displaystyle\sum_{p=0}^{n}(2p+2)B_{2p+2}>0}}
\sum_{p=0}^{n}(2p+2)B_{2p+2} > 0

sum((2*p + 2)*B[2*p + 2], p = 0..n) > 0
Sum[(2*p + 2)*Subscript[B, 2*p + 2], {p, 0, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.15.E31 p = 0 n C 2 p + 1 > 0 superscript subscript 𝑝 0 𝑛 subscript 𝐶 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{n}C_{2p+1}>0}}
\sum_{p=0}^{n}C_{2p+1} > 0

sum(C[2*p + 1], p = 0..n) > 0
Sum[Subscript[C, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.15.E36 p = 0 n ( 2 p + 1 ) D 2 p + 1 > 0 superscript subscript 𝑝 0 𝑛 2 𝑝 1 subscript 𝐷 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{n}(2p+1)D_{2p+1}>0}}
\sum_{p=0}^{n}(2p+1)D_{2p+1} > 0

sum((2*p + 1)*D[2*p + 1], p = 0..n) > 0
Sum[(2*p + 1)*Subscript[D, 2*p + 1], {p, 0, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.15.E40 ( 1 - 1 2 k 2 ) p = 0 n D 2 p + 2 2 - 1 2 k 2 p = 1 n D 2 p D 2 p + 2 = 1 1 1 2 superscript 𝑘 2 superscript subscript 𝑝 0 𝑛 superscript subscript 𝐷 2 𝑝 2 2 1 2 superscript 𝑘 2 superscript subscript 𝑝 1 𝑛 subscript 𝐷 2 𝑝 subscript 𝐷 2 𝑝 2 1 {\displaystyle{\displaystyle\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=0}^{n}D_{2% p+2}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{n}D_{2p}D_{2p+2}=1}}
\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=0}^{n}D_{2p+2}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{n}D_{2p}D_{2p+2} = 1

(1 -(1)/(2)*(k)^(2))*sum((D[2*p + 2])^(2), p = 0..n)-(1)/(2)*(k)^(2)* sum(D[2*p]*D[2*p + 2], p = 1..n) = 1
(1 -Divide[1,2]*(k)^(2))*Sum[(Subscript[D, 2*p + 2])^(2), {p, 0, n}, GenerateConditions->None]-Divide[1,2]*(k)^(2)* Sum[Subscript[D, 2*p]*Subscript[D, 2*p + 2], {p, 1, n}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.15.E41 p = 0 n ( 2 p + 2 ) D 2 p + 2 > 0 superscript subscript 𝑝 0 𝑛 2 𝑝 2 subscript 𝐷 2 𝑝 2 0 {\displaystyle{\displaystyle\sum_{p=0}^{n}(2p+2)D_{2p+2}>0}}
\sum_{p=0}^{n}(2p+2)D_{2p+2} > 0

sum((2*p + 2)*D[2*p + 2], p = 0..n) > 0
Sum[(2*p + 2)*Subscript[D, 2*p + 2], {p, 0, n}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -