29.14: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/29.14.E3 29.14.E3] || [[Item:Q8737|<math>w(s,t) = \Jacobiellsnk^{2}@{\compellintKk@@{k}+\iunit t}{k}-\Jacobiellsnk^{2}@{s}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(s,t) = \Jacobiellsnk^{2}@{\compellintKk@@{k}+\iunit t}{k}-\Jacobiellsnk^{2}@{s}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(s , t) = (JacobiSN(EllipticK(k)+ I*t, k))^(2)- (JacobiSN(s, k))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[s , t] == (JacobiSN[EllipticK[(k)^2]+ I*t, (k)^2])^(2)- (JacobiSN[s, (k)^2])^(2)</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/29.14.E3 29.14.E3] || <math qid="Q8737">w(s,t) = \Jacobiellsnk^{2}@{\compellintKk@@{k}+\iunit t}{k}-\Jacobiellsnk^{2}@{s}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(s,t) = \Jacobiellsnk^{2}@{\compellintKk@@{k}+\iunit t}{k}-\Jacobiellsnk^{2}@{s}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(s , t) = (JacobiSN(EllipticK(k)+ I*t, k))^(2)- (JacobiSN(s, k))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[s , t] == (JacobiSN[EllipticK[(k)^2]+ I*t, (k)^2])^(2)- (JacobiSN[s, (k)^2])^(2)</syntaxhighlight> || Failure || Failure || Error || Error
|}
|}
</div>
</div>

Latest revision as of 12:09, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
29.14.E3 w ( s , t ) = sn 2 ( K + i t , k ) - sn 2 ( s , k ) 𝑤 𝑠 𝑡 Jacobi-elliptic-sn 2 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit 𝑡 𝑘 Jacobi-elliptic-sn 2 𝑠 𝑘 {\displaystyle{\displaystyle w(s,t)={\operatorname{sn}^{2}}\left(K+\mathrm{i}t% ,k\right)-{\operatorname{sn}^{2}}\left(s,k\right)}}
w(s,t) = \Jacobiellsnk^{2}@{\compellintKk@@{k}+\iunit t}{k}-\Jacobiellsnk^{2}@{s}{k}

w(s , t) = (JacobiSN(EllipticK(k)+ I*t, k))^(2)- (JacobiSN(s, k))^(2)
w[s , t] == (JacobiSN[EllipticK[(k)^2]+ I*t, (k)^2])^(2)- (JacobiSN[s, (k)^2])^(2)
Failure Failure Error Error