27.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.4.E3 27.4.E3] | | | [https://dlmf.nist.gov/27.4.E3 27.4.E3] || <math qid="Q8014">\Riemannzeta@{s} = \sum_{n=1}^{\infty}n^{-s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \sum_{n=1}^{\infty}n^{-s}</syntaxhighlight> || <math>\realpart@@{s} > 1</math> || <syntaxhighlight lang=mathematica>Zeta(s) = sum((n)^(- s), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.4.E3 27.4.E3] | | | [https://dlmf.nist.gov/27.4.E3 27.4.E3] || <math qid="Q8014">\sum_{n=1}^{\infty}n^{-s} = \prod_{p}(1-p^{-s})^{-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=1}^{\infty}n^{-s} = \prod_{p}(1-p^{-s})^{-1}</syntaxhighlight> || <math>\realpart@@{s} > 1</math> || <syntaxhighlight lang=mathematica>sum((n)^(- s), n = 1..infinity) = product((1 - (p)^(- s))^(- 1), p = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Product[(1 - (p)^(- s))^(- 1), {p, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[2.612375348685488, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -1.5]]], -1] | ||
Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[1.6449340668482262, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -2]]], -1] | Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[1.6449340668482262, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -2]]], -1] | ||
Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 2]}</syntaxhighlight><br></div></div> | Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 2]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.4.E6 27.4.E6] | | | [https://dlmf.nist.gov/27.4.E6 27.4.E6] || <math qid="Q8017">\sum_{n=1}^{\infty}\Eulertotientphi[]@{n}n^{-s} = \frac{\Riemannzeta@{s-1}}{\Riemannzeta@{s}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=1}^{\infty}\Eulertotientphi[]@{n}n^{-s} = \frac{\Riemannzeta@{s-1}}{\Riemannzeta@{s}}</syntaxhighlight> || <math>\realpart@@{s} > 2</math> || <syntaxhighlight lang=mathematica>sum(phi(n)*(n)^(- s), n = 1..infinity) = (Zeta(s - 1))/(Zeta(s))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[EulerPhi[n]*(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Divide[Zeta[s - 1],Zeta[s]]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 0] | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.4.E9 27.4.E9] | | | [https://dlmf.nist.gov/27.4.E9 27.4.E9] || <math qid="Q8020">\sum_{n=1}^{\infty}2^{\nprimesdiv@{n}}n^{-s} = \frac{(\Riemannzeta@{s})^{2}}{\Riemannzeta@{2s}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=1}^{\infty}2^{\nprimesdiv@{n}}n^{-s} = \frac{(\Riemannzeta@{s})^{2}}{\Riemannzeta@{2s}}</syntaxhighlight> || <math>\realpart@@{s} > 1</math> || <syntaxhighlight lang=mathematica>sum((2)^(ifactor(n))* (n)^(- s), n = 1..infinity) = ((Zeta(s))^(2))/(Zeta(2*s))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.4.E11 27.4.E11] | | | [https://dlmf.nist.gov/27.4.E11 27.4.E11] || <math qid="Q8022">\sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}n^{-s} = \Riemannzeta@{s}\Riemannzeta@{s-\alpha}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}n^{-s} = \Riemannzeta@{s}\Riemannzeta@{s-\alpha}</syntaxhighlight> || <math>\realpart@@{s} > \max(1</math> || <syntaxhighlight lang=mathematica>sum(add(divisors(alpha))*(n)^(- s), n = 1..infinity) = Zeta(s)*Zeta(s - alpha)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity) | ||
Test Values: {alpha = 3/2, s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 5.224750698 | Test Values: {alpha = 3/2, s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 5.224750698 | ||
Test Values: {alpha = 3/2, s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | Test Values: {alpha = 3/2, s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.4.E13 27.4.E13] | | | [https://dlmf.nist.gov/27.4.E13 27.4.E13] || <math qid="Q8024">\sum_{n=2}^{\infty}(\ln@@{n})n^{-s} = -\Riemannzeta'@{s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=2}^{\infty}(\ln@@{n})n^{-s} = -\Riemannzeta'@{s}</syntaxhighlight> || <math>\realpart@@{s} > 1</math> || <syntaxhighlight lang=mathematica>sum((ln(n))*(n)^(- s), n = 2..infinity) = - diff( Zeta(s), s$(1) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(Log[n])*(n)^(- s), {n, 2, Infinity}, GenerateConditions->None] == - D[Zeta[s], {s, 1}]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 2] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:06, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
27.4.E3 | \Riemannzeta@{s} = \sum_{n=1}^{\infty}n^{-s} |
Zeta(s) = sum((n)^(- s), n = 1..infinity)
|
Zeta[s] == Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 2] | |
27.4.E3 | \sum_{n=1}^{\infty}n^{-s} = \prod_{p}(1-p^{-s})^{-1} |
sum((n)^(- s), n = 1..infinity) = product((1 - (p)^(- s))^(- 1), p = - infinity..infinity)
|
Sum[(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Product[(1 - (p)^(- s))^(- 1), {p, - Infinity, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [2 / 2]
Result: Plus[2.612375348685488, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -1.5]]], -1]
Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 1.5]}
Result: Plus[1.6449340668482262, Times[-1.0, NProduct[Power[Plus[1, Times[-1, Power[p, -2]]], -1]
Test Values: {p, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[s, 2]}
| |
27.4.E6 | \sum_{n=1}^{\infty}\Eulertotientphi[]@{n}n^{-s} = \frac{\Riemannzeta@{s-1}}{\Riemannzeta@{s}} |
sum(phi(n)*(n)^(- s), n = 1..infinity) = (Zeta(s - 1))/(Zeta(s))
|
Sum[EulerPhi[n]*(n)^(- s), {n, 1, Infinity}, GenerateConditions->None] == Divide[Zeta[s - 1],Zeta[s]]
|
Failure | Successful | Error | Successful [Tested: 0] | |
27.4.E9 | \sum_{n=1}^{\infty}2^{\nprimesdiv@{n}}n^{-s} = \frac{(\Riemannzeta@{s})^{2}}{\Riemannzeta@{2s}} |
sum((2)^(ifactor(n))* (n)^(- s), n = 1..infinity) = ((Zeta(s))^(2))/(Zeta(2*s))
|
Error
|
Error | Missing Macro Error | - | - | |
27.4.E11 | \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}n^{-s} = \Riemannzeta@{s}\Riemannzeta@{s-\alpha} |
sum(add(divisors(alpha))*(n)^(- s), n = 1..infinity) = Zeta(s)*Zeta(s - alpha)
|
Error
|
Failure | Missing Macro Error | Failed [18 / 18] Result: Float(infinity)
Test Values: {alpha = 3/2, s = -3/2}
Result: 5.224750698
Test Values: {alpha = 3/2, s = 3/2}
... skip entries to safe data |
- | |
27.4.E13 | \sum_{n=2}^{\infty}(\ln@@{n})n^{-s} = -\Riemannzeta'@{s} |
sum((ln(n))*(n)^(- s), n = 2..infinity) = - diff( Zeta(s), s$(1) )
|
Sum[(Log[n])*(n)^(- s), {n, 2, Infinity}, GenerateConditions->None] == - D[Zeta[s], {s, 1}]
|
Successful | Successful | - | Successful [Tested: 2] |