26.15: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/26.15.E3 26.15.E3] || [[Item:Q7970|<math>R(x,B) = \sum_{j=0}^{n}r_{j}(B)\,x^{j}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>R(x,B) = \sum_{j=0}^{n}r_{j}(B)\,x^{j}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R(x , B) = sum(r[j](B)* (x)^(j), j = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R[x , B] == Sum[Subscript[r, j][B]* (x)^(j), {j, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/26.15.E3 26.15.E3] || <math qid="Q7970">R(x,B) = \sum_{j=0}^{n}r_{j}(B)\,x^{j}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>R(x,B) = \sum_{j=0}^{n}r_{j}(B)\,x^{j}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R(x , B) = sum(r[j](B)* (x)^(j), j = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R[x , B] == Sum[Subscript[r, j][B]* (x)^(j), {j, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/26.15.E4 26.15.E4] || [[Item:Q7971|<math>R(x,B) = R(x,B_{1})\,R(x,B_{2})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>R(x,B) = R(x,B_{1})\,R(x,B_{2})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R(x , B) = R(x , B[1])* R(x , B[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R[x , B] == R[x , Subscript[B, 1]]* R[x , Subscript[B, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/26.15.E4 26.15.E4] || <math qid="Q7971">R(x,B) = R(x,B_{1})\,R(x,B_{2})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>R(x,B) = R(x,B_{1})\,R(x,B_{2})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R(x , B) = R(x , B[1])* R(x , B[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">R[x , B] == R[x , Subscript[B, 1]]* R[x , Subscript[B, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/26.15.E6 26.15.E6] || [[Item:Q7973|<math>N(x,B) = \sum_{k=0}^{n}N_{k}(B)\,x^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>N(x,B) = \sum_{k=0}^{n}N_{k}(B)\,x^{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N(x , B) = sum(N[k](B)* (x)^(k), k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N[x , B] == Sum[Subscript[N, k][B]* (x)^(k), {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/26.15.E6 26.15.E6] || <math qid="Q7973">N(x,B) = \sum_{k=0}^{n}N_{k}(B)\,x^{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>N(x,B) = \sum_{k=0}^{n}N_{k}(B)\,x^{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N(x , B) = sum(N[k](B)* (x)^(k), k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N[x , B] == Sum[Subscript[N, k][B]* (x)^(k), {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/26.15.E7 26.15.E7] || [[Item:Q7974|<math>N(x,B) = \sum_{k=0}^{n}r_{k}(B)(n-k)!(x-1)^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>N(x,B) = \sum_{k=0}^{n}r_{k}(B)(n-k)!(x-1)^{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N(x , B) = sum(r[k](B)*factorial(n - k)*(x - 1)^(k), k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N[x , B] == Sum[Subscript[r, k][B]*(n - k)!*(x - 1)^(k), {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/26.15.E7 26.15.E7] || <math qid="Q7974">N(x,B) = \sum_{k=0}^{n}r_{k}(B)(n-k)!(x-1)^{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>N(x,B) = \sum_{k=0}^{n}r_{k}(B)(n-k)!(x-1)^{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N(x , B) = sum(r[k](B)*factorial(n - k)*(x - 1)^(k), k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">N[x , B] == Sum[Subscript[r, k][B]*(n - k)!*(x - 1)^(k), {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/26.15.E8 26.15.E8] || [[Item:Q7975|<math>N_{0}(B)\defeq N(0,B) = \sum_{k=0}^{n}(-1)^{k}r_{k}(B)(n-k)!</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>N_{0}(B)\defeq N(0,B) = \sum_{k=0}^{n}(-1)^{k}r_{k}(B)(n-k)!</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>N[0](B) = N(0 , B) = sum((- 1)^(k)* r[k](B)*factorial(n - k), k = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[N, 0][B] == N[0 , B] == Sum[(- 1)^(k)* Subscript[r, k][B]*(n - k)!, {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/26.15.E8 26.15.E8] || <math qid="Q7975">N_{0}(B)\defeq N(0,B) = \sum_{k=0}^{n}(-1)^{k}r_{k}(B)(n-k)!</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>N_{0}(B)\defeq N(0,B) = \sum_{k=0}^{n}(-1)^{k}r_{k}(B)(n-k)!</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>N[0](B) = N(0 , B) = sum((- 1)^(k)* r[k](B)*factorial(n - k), k = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[N, 0][B] == N[0 , B] == Sum[(- 1)^(k)* Subscript[r, k][B]*(n - k)!, {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|-  
|-  
| [https://dlmf.nist.gov/26.15.E9 26.15.E9] || [[Item:Q7976|<math>r_{k}(B) = \frac{2n}{2n-k}\binom{2n-k}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>r_{k}(B) = \frac{2n}{2n-k}\binom{2n-k}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>r[k](B) = (2*n)/(2*n - k)*binomial(2*n - k,k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[r, k][B] == Divide[2*n,2*n - k]*Binomial[2*n - k,k]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.500000000+.8660254040*I
| [https://dlmf.nist.gov/26.15.E9 26.15.E9] || <math qid="Q7976">r_{k}(B) = \frac{2n}{2n-k}\binom{2n-k}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>r_{k}(B) = \frac{2n}{2n-k}\binom{2n-k}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>r[k](B) = (2*n)/(2*n - k)*binomial(2*n - k,k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[r, k][B] == Divide[2*n,2*n - k]*Binomial[2*n - k,k]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.500000000+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.500000000+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.500000000+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.5, 0.8660254037844386]
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.5, 0.8660254037844386]
Line 30: Line 30:
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 2], Rule[Subscript[r, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 2], Rule[Subscript[r, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.15.E10 26.15.E10] || [[Item:Q7977|<math>2(n!)N_{0}(B) = 2(n!)\sum_{k=0}^{n}(-1)^{k}\frac{2n}{2n-k}\binom{2n-k}{k}{(n-k)!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2(n!)N_{0}(B) = 2(n!)\sum_{k=0}^{n}(-1)^{k}\frac{2n}{2n-k}\binom{2n-k}{k}{(n-k)!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(factorial(n))*N[0](B) = 2*(factorial(n))*sum((- 1)^(k)*(2*n)/(2*n - k)*binomial(2*n - k,k)*factorial(n - k), k = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*((n)!)*Subscript[N, 0][B] == 2*((n)!)*Sum[(- 1)^(k)*Divide[2*n,2*n - k]*Binomial[2*n - k,k]*(n - k)!, {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [292 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.000000001+1.732050808*I
| [https://dlmf.nist.gov/26.15.E10 26.15.E10] || <math qid="Q7977">2(n!)N_{0}(B) = 2(n!)\sum_{k=0}^{n}(-1)^{k}\frac{2n}{2n-k}\binom{2n-k}{k}{(n-k)!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2(n!)N_{0}(B) = 2(n!)\sum_{k=0}^{n}(-1)^{k}\frac{2n}{2n-k}\binom{2n-k}{k}{(n-k)!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(factorial(n))*N[0](B) = 2*(factorial(n))*sum((- 1)^(k)*(2*n)/(2*n - k)*binomial(2*n - k,k)*factorial(n - k), k = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*((n)!)*Subscript[N, 0][B] == 2*((n)!)*Sum[(- 1)^(k)*Divide[2*n,2*n - k]*Binomial[2*n - k,k]*(n - k)!, {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [292 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.000000001+1.732050808*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.000000002+3.464101616*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.000000002+3.464101616*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/26.15.E11 26.15.E11] || [[Item:Q7978|<math>\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = \prod_{j=1}^{n}(x+b_{j}-j+1)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = \prod_{j=1}^{n}(x+b_{j}-j+1)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(r[n - k](B)*x - k + 1[k], k = 0..n) = product(x + b[j]- j + 1, j = 1..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[r, n - k][B]*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == Product[x + Subscript[b, j]- j + 1, {j, 1, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/26.15.E11 26.15.E11] || <math qid="Q7978">\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = \prod_{j=1}^{n}(x+b_{j}-j+1)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = \prod_{j=1}^{n}(x+b_{j}-j+1)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(r[n - k](B)*x - k + 1[k], k = 0..n) = product(x + b[j]- j + 1, j = 1..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[r, n - k][B]*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == Product[x + Subscript[b, j]- j + 1, {j, 1, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/26.15.E12 26.15.E12] || [[Item:Q7979|<math>\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = x^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = x^{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(r[n - k](B)*x - k + 1[k], k = 0..n) = (x)^(n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[r, n - k][B]*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == (x)^(n)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/26.15.E12 26.15.E12] || <math qid="Q7979">\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = x^{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(r[n - k](B)*x - k + 1[k], k = 0..n) = (x)^(n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[r, n - k][B]*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == (x)^(n)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/26.15.E13 26.15.E13] || [[Item:Q7980|<math>r_{n-k}(B) = \StirlingnumberS@{n}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>r_{n-k}(B) = \StirlingnumberS@{n}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>r[n - k](B) = Stirling2(n, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[r, n - k][B] == StirlingS2[n, k]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4999999996+.8660254040*I
| [https://dlmf.nist.gov/26.15.E13 26.15.E13] || <math qid="Q7980">r_{n-k}(B) = \StirlingnumberS@{n}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>r_{n-k}(B) = \StirlingnumberS@{n}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>r[n - k](B) = Stirling2(n, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[r, n - k][B] == StirlingS2[n, k]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4999999996+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4999999996+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4999999996+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4999999999999999, 0.8660254037844386]
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4999999999999999, 0.8660254037844386]

Latest revision as of 12:06, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.15.E3 R ( x , B ) = j = 0 n r j ( B ) x j 𝑅 𝑥 𝐵 superscript subscript 𝑗 0 𝑛 subscript 𝑟 𝑗 𝐵 superscript 𝑥 𝑗 {\displaystyle{\displaystyle R(x,B)=\sum_{j=0}^{n}r_{j}(B)\,x^{j}}}
R(x,B) = \sum_{j=0}^{n}r_{j}(B)\,x^{j}

R(x , B) = sum(r[j](B)* (x)^(j), j = 0..n)
R[x , B] == Sum[Subscript[r, j][B]* (x)^(j), {j, 0, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
26.15.E4 R ( x , B ) = R ( x , B 1 ) R ( x , B 2 ) 𝑅 𝑥 𝐵 𝑅 𝑥 subscript 𝐵 1 𝑅 𝑥 subscript 𝐵 2 {\displaystyle{\displaystyle R(x,B)=R(x,B_{1})\,R(x,B_{2})}}
R(x,B) = R(x,B_{1})\,R(x,B_{2})

R(x , B) = R(x , B[1])* R(x , B[2])
R[x , B] == R[x , Subscript[B, 1]]* R[x , Subscript[B, 2]]
Skipped - no semantic math Skipped - no semantic math - -
26.15.E6 N ( x , B ) = k = 0 n N k ( B ) x k 𝑁 𝑥 𝐵 superscript subscript 𝑘 0 𝑛 subscript 𝑁 𝑘 𝐵 superscript 𝑥 𝑘 {\displaystyle{\displaystyle N(x,B)=\sum_{k=0}^{n}N_{k}(B)\,x^{k}}}
N(x,B) = \sum_{k=0}^{n}N_{k}(B)\,x^{k}

N(x , B) = sum(N[k](B)* (x)^(k), k = 0..n)
N[x , B] == Sum[Subscript[N, k][B]* (x)^(k), {k, 0, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
26.15.E7 N ( x , B ) = k = 0 n r k ( B ) ( n - k ) ! ( x - 1 ) k 𝑁 𝑥 𝐵 superscript subscript 𝑘 0 𝑛 subscript 𝑟 𝑘 𝐵 𝑛 𝑘 superscript 𝑥 1 𝑘 {\displaystyle{\displaystyle N(x,B)=\sum_{k=0}^{n}r_{k}(B)(n-k)!(x-1)^{k}}}
N(x,B) = \sum_{k=0}^{n}r_{k}(B)(n-k)!(x-1)^{k}

N(x , B) = sum(r[k](B)*factorial(n - k)*(x - 1)^(k), k = 0..n)
N[x , B] == Sum[Subscript[r, k][B]*(n - k)!*(x - 1)^(k), {k, 0, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
26.15.E8 N 0 ( B ) N ( 0 , B ) = k = 0 n ( - 1 ) k r k ( B ) ( n - k ) ! equal-by definition subscript 𝑁 0 𝐵 𝑁 0 𝐵 superscript subscript 𝑘 0 𝑛 superscript 1 𝑘 subscript 𝑟 𝑘 𝐵 𝑛 𝑘 {\displaystyle{\displaystyle N_{0}(B)\equiv N(0,B)=\sum_{k=0}^{n}(-1)^{k}r_{k}% (B)(n-k)!}}
N_{0}(B)\defeq N(0,B) = \sum_{k=0}^{n}(-1)^{k}r_{k}(B)(n-k)!

N[0](B) = N(0 , B) = sum((- 1)^(k)* r[k](B)*factorial(n - k), k = 0..n)
Subscript[N, 0][B] == N[0 , B] == Sum[(- 1)^(k)* Subscript[r, k][B]*(n - k)!, {k, 0, n}, GenerateConditions->None]
Failure Failure Error Error
26.15.E9 r k ( B ) = 2 n 2 n - k ( 2 n - k k ) subscript 𝑟 𝑘 𝐵 2 𝑛 2 𝑛 𝑘 binomial 2 𝑛 𝑘 𝑘 {\displaystyle{\displaystyle r_{k}(B)=\frac{2n}{2n-k}\genfrac{(}{)}{0.0pt}{}{2% n-k}{k}}}
r_{k}(B) = \frac{2n}{2n-k}\binom{2n-k}{k}

r[k](B) = (2*n)/(2*n - k)*binomial(2*n - k,k)
Subscript[r, k][B] == Divide[2*n,2*n - k]*Binomial[2*n - k,k]
Failure Failure
Failed [300 / 300]
Result: -1.500000000+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}

Result: -3.500000000+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-1.5, 0.8660254037844386]
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 1], Rule[Subscript[r, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-3.5, 0.8660254037844386]
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 2], Rule[Subscript[r, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
26.15.E10 2 ( n ! ) N 0 ( B ) = 2 ( n ! ) k = 0 n ( - 1 ) k 2 n 2 n - k ( 2 n - k k ) ( n - k ) ! 2 𝑛 subscript 𝑁 0 𝐵 2 𝑛 superscript subscript 𝑘 0 𝑛 superscript 1 𝑘 2 𝑛 2 𝑛 𝑘 binomial 2 𝑛 𝑘 𝑘 𝑛 𝑘 {\displaystyle{\displaystyle 2(n!)N_{0}(B)=2(n!)\sum_{k=0}^{n}(-1)^{k}\frac{2n% }{2n-k}\genfrac{(}{)}{0.0pt}{}{2n-k}{k}{(n-k)!}}}
2(n!)N_{0}(B) = 2(n!)\sum_{k=0}^{n}(-1)^{k}\frac{2n}{2n-k}\binom{2n-k}{k}{(n-k)!}

2*(factorial(n))*N[0](B) = 2*(factorial(n))*sum((- 1)^(k)*(2*n)/(2*n - k)*binomial(2*n - k,k)*factorial(n - k), k = 0..n)
2*((n)!)*Subscript[N, 0][B] == 2*((n)!)*Sum[(- 1)^(k)*Divide[2*n,2*n - k]*Binomial[2*n - k,k]*(n - k)!, {k, 0, n}, GenerateConditions->None]
Failure Failure
Failed [292 / 300]
Result: 3.000000001+1.732050808*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: 2.000000002+3.464101616*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Skipped - Because timed out
26.15.E11 k = 0 n r n - k ( B ) ( x - k + 1 ) k = j = 1 n ( x + b j - j + 1 ) superscript subscript 𝑘 0 𝑛 subscript 𝑟 𝑛 𝑘 𝐵 subscript 𝑥 𝑘 1 𝑘 superscript subscript product 𝑗 1 𝑛 𝑥 subscript 𝑏 𝑗 𝑗 1 {\displaystyle{\displaystyle\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k}=\prod_{j=1}^{n% }(x+b_{j}-j+1)}}
\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = \prod_{j=1}^{n}(x+b_{j}-j+1)

sum(r[n - k](B)*x - k + 1[k], k = 0..n) = product(x + b[j]- j + 1, j = 1..n)
Sum[Subscript[r, n - k][B]*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == Product[x + Subscript[b, j]- j + 1, {j, 1, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
26.15.E12 k = 0 n r n - k ( B ) ( x - k + 1 ) k = x n superscript subscript 𝑘 0 𝑛 subscript 𝑟 𝑛 𝑘 𝐵 subscript 𝑥 𝑘 1 𝑘 superscript 𝑥 𝑛 {\displaystyle{\displaystyle\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k}=x^{n}}}
\sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = x^{n}

sum(r[n - k](B)*x - k + 1[k], k = 0..n) = (x)^(n)
Sum[Subscript[r, n - k][B]*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == (x)^(n)
Skipped - no semantic math Skipped - no semantic math - -
26.15.E13 r n - k ( B ) = S ( n , k ) subscript 𝑟 𝑛 𝑘 𝐵 Stirling-number-second-kind-S 𝑛 𝑘 {\displaystyle{\displaystyle r_{n-k}(B)=S\left(n,k\right)}}
r_{n-k}(B) = \StirlingnumberS@{n}{k}

r[n - k](B) = Stirling2(n, k)
Subscript[r, n - k][B] == StirlingS2[n, k]
Failure Failure
Failed [300 / 300]
Result: -.4999999996+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}

Result: -.4999999996+.8660254040*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.4999999999999999, 0.8660254037844386]
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 1], Rule[Subscript[r, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.4999999999999999, 0.8660254037844386]
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 2], Rule[Subscript[r, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data