25.5: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E1 25.5.E1] | | | [https://dlmf.nist.gov/25.5.E1 25.5.E1] || <math qid="Q7614">\Riemannzeta@{s} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > 1, \realpart@@{s} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(GAMMA(s))*int(((x)^(s - 1))/(exp(x)- 1), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1),Exp[x]- 1], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E2 25.5.E2] | | | [https://dlmf.nist.gov/25.5.E2 25.5.E2] || <math qid="Q7615">\Riemannzeta@{s} = \frac{1}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}-1)^{2}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}-1)^{2}}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > 1, \realpart@@{(s+1)} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(GAMMA(s + 1))*int((exp(x)*(x)^(s))/((exp(x)- 1)^(2)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,Gamma[s + 1]]*Integrate[Divide[Exp[x]*(x)^(s),(Exp[x]- 1)^(2)], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 2] || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E3 25.5.E3] | | | [https://dlmf.nist.gov/25.5.E3 25.5.E3] || <math qid="Q7616">\Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}+1}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}+1}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/((1 - (2)^(1 - s))*GAMMA(s))*int(((x)^(s - 1))/(exp(x)+ 1), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,(1 - (2)^(1 - s))*Gamma[s]]*Integrate[Divide[(x)^(s - 1),Exp[x]+ 1], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E4 25.5.E4] | | | [https://dlmf.nist.gov/25.5.E4 25.5.E4] || <math qid="Q7617">\Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}+1)^{2}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}+1)^{2}}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(s+1)} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/((1 - (2)^(1 - s))*GAMMA(s + 1))*int((exp(x)*(x)^(s))/((exp(x)+ 1)^(2)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,(1 - (2)^(1 - s))*Gamma[s + 1]]*Integrate[Divide[Exp[x]*(x)^(s),(Exp[x]+ 1)^(2)], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E5 25.5.E5] | | | [https://dlmf.nist.gov/25.5.E5 25.5.E5] || <math qid="Q7618">\Riemannzeta@{s} = -s\int_{0}^{\infty}\frac{x-\floor{x}-\frac{1}{2}}{x^{s+1}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = -s\int_{0}^{\infty}\frac{x-\floor{x}-\frac{1}{2}}{x^{s+1}}\diff{x}</syntaxhighlight> || <math>-1 < \realpart@@{s}, \realpart@@{s} < 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = - s*int((x - floor(x)-(1)/(2))/((x)^(s + 1)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == - s*Integrate[Divide[x - Floor[x]-Divide[1,2],(x)^(s + 1)], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2500601.4984594644, 2.5458720000534374*^-17] | ||
Test Values: {Rule[s, -0.5]}</syntaxhighlight><br></div></div> | Test Values: {Rule[s, -0.5]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E6 25.5.E6] | | | [https://dlmf.nist.gov/25.5.E6 25.5.E6] || <math qid="Q7619">\Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}\right)\frac{x^{s-1}}{e^{x}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}\right)\frac{x^{s-1}}{e^{x}}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > -1, \realpart@@{s} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(2)+(1)/(s - 1)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2))*((x)^(s - 1))/(exp(x)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,2]+Divide[1,s - 1]+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2])*Divide[(x)^(s - 1),Exp[x]], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[s, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[s, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[s, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[s, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E7 25.5.E7] | | | [https://dlmf.nist.gov/25.5.E7 25.5.E7] || <math qid="Q7620">\Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}\Pochhammersym{s}{2m-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}-\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}x^{2m-1}\right)\frac{x^{s-1}}{e^{x}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}\Pochhammersym{s}{2m-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}-\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}x^{2m-1}\right)\frac{x^{s-1}}{e^{x}}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > -(2n+1), \realpart@@{s} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(2)+(1)/(s - 1)+ sum((bernoulli(2*m))/(factorial(2*m))*pochhammer(s, 2*m - 1)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2)- sum((bernoulli(2*m))/(factorial(2*m))*(x)^(2*m - 1), m = 1..n))*((x)^(s - 1))/(exp(x)), x = 0..infinity), m = 1..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,2]+Divide[1,s - 1]+ Sum[Divide[BernoulliB[2*m],(2*m)!]*Pochhammer[s, 2*m - 1]+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2]- Sum[Divide[BernoulliB[2*m],(2*m)!]*(x)^(2*m - 1), {m, 1, n}, GenerateConditions->None])*Divide[(x)^(s - 1),Exp[x]], {x, 0, Infinity}, GenerateConditions->None], {m, 1, n}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1027534444e-1 | ||
Test Values: {s = 3/2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .24417579e-1 | Test Values: {s = 3/2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .24417579e-1 | ||
Test Values: {s = 2, n = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out | Test Values: {s = 2, n = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E8 25.5.E8] | | | [https://dlmf.nist.gov/25.5.E8 25.5.E8] || <math qid="Q7621">\Riemannzeta@{s} = \frac{1}{2(1-2^{-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{\sinh@@{x}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{2(1-2^{-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{\sinh@@{x}}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > 1, \realpart@@{s} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(2*(1 - (2)^(- s))*GAMMA(s))*int(((x)^(s - 1))/(sinh(x)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,2*(1 - (2)^(- s))*Gamma[s]]*Integrate[Divide[(x)^(s - 1),Sinh[x]], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E9 25.5.E9] | | | [https://dlmf.nist.gov/25.5.E9 25.5.E9] || <math qid="Q7622">\Riemannzeta@{s} = \frac{2^{s-1}}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{x^{s}}{(\sinh@@{x})^{2}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{2^{s-1}}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{x^{s}}{(\sinh@@{x})^{2}}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > 1, \realpart@@{(s+1)} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = ((2)^(s - 1))/(GAMMA(s + 1))*int(((x)^(s))/((sinh(x))^(2)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[(2)^(s - 1),Gamma[s + 1]]*Integrate[Divide[(x)^(s),(Sinh[x])^(2)], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 2] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E10 25.5.E10] | | | [https://dlmf.nist.gov/25.5.E10 25.5.E10] || <math qid="Q7623">\Riemannzeta@{s} = \frac{2^{s-1}}{1-2^{1-s}}\int_{0}^{\infty}\frac{\cos@{s\atan@@{x}}}{(1+x^{2})^{s/2}\cosh@{\frac{1}{2}\pi x}}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{2^{s-1}}{1-2^{1-s}}\int_{0}^{\infty}\frac{\cos@{s\atan@@{x}}}{(1+x^{2})^{s/2}\cosh@{\frac{1}{2}\pi x}}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(s) = ((2)^(s - 1))/(1 - (2)^(1 - s))*int((cos(s*arctan(x)))/((1 + (x)^(2))^(s/2)* cosh((1)/(2)*Pi*x)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[(2)^(s - 1),1 - (2)^(1 - s)]*Integrate[Divide[Cos[s*ArcTan[x]],(1 + (x)^(2))^(s/2)* Cosh[Divide[1,2]*Pi*x]], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 6] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E11 25.5.E11] | | | [https://dlmf.nist.gov/25.5.E11 25.5.E11] || <math qid="Q7624">\Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+2\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{2\pi x}-1)}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+2\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{2\pi x}-1)}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(2)+(1)/(s - 1)+ 2*int((sin(s*arctan(x)))/((1 + (x)^(2))^(s/2)*(exp(2*Pi*x)- 1)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,2]+Divide[1,s - 1]+ 2*Integrate[Divide[Sin[s*ArcTan[x]],(1 + (x)^(2))^(s/2)*(Exp[2*Pi*x]- 1)], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 6] || Successful [Tested: 6] | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E12 25.5.E12] | | | [https://dlmf.nist.gov/25.5.E12 25.5.E12] || <math qid="Q7625">\Riemannzeta@{s} = \frac{2^{s-1}}{s-1}-2^{s}\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{\pi x}+1)}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{2^{s-1}}{s-1}-2^{s}\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{\pi x}+1)}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(s) = ((2)^(s - 1))/(s - 1)- (2)^(s)* int((sin(s*arctan(x)))/((1 + (x)^(2))^(s/2)*(exp(Pi*x)+ 1)), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[(2)^(s - 1),s - 1]- (2)^(s)* Integrate[Divide[Sin[s*ArcTan[x]],(1 + (x)^(2))^(s/2)*(Exp[Pi*x]+ 1)], {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 6] || Successful [Tested: 6] | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E13 25.5.E13] | | | [https://dlmf.nist.gov/25.5.E13 25.5.E13] || <math qid="Q7626">\Riemannzeta@{s} = \frac{\pi^{s/2}}{s(s-1)\EulerGamma@{\frac{1}{2}s}}+\frac{\pi^{s/2}}{\EulerGamma@{\frac{1}{2}s}}\*\int_{1}^{\infty}\left(x^{s/2}+x^{(1-s)/2}\right)\frac{\omega(x)}{x}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{\pi^{s/2}}{s(s-1)\EulerGamma@{\frac{1}{2}s}}+\frac{\pi^{s/2}}{\EulerGamma@{\frac{1}{2}s}}\*\int_{1}^{\infty}\left(x^{s/2}+x^{(1-s)/2}\right)\frac{\omega(x)}{x}\diff{x}</syntaxhighlight> || <math>s \neq 1, \realpart@@{(\frac{1}{2}s)} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = ((Pi)^(s/2))/(s*(s - 1)*GAMMA((1)/(2)*s))+((Pi)^(s/2))/(GAMMA((1)/(2)*s))* int(((x)^(s/2)+ (x)^((1 - s)/2))*(omega(x))/(x), x = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[(Pi)^(s/2),s*(s - 1)*Gamma[Divide[1,2]*s]]+Divide[(Pi)^(s/2),Gamma[Divide[1,2]*s]]* Integrate[((x)^(s/2)+ (x)^((1 - s)/2))*Divide[\[Omega][x],x], {x, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | ||
Test Values: {omega = 1/2*3^(1/2)+1/2*I, s = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | Test Values: {omega = 1/2*3^(1/2)+1/2*I, s = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | ||
Test Values: {omega = 1/2*3^(1/2)+1/2*I, s = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {omega = 1/2*3^(1/2)+1/2*I, s = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E14 25.5.E14] | | | [https://dlmf.nist.gov/25.5.E14 25.5.E14] || <math qid="Q7627">\omega(x)\defeq\sum_{n=1}^{\infty}e^{-n^{2}\pi x} = \frac{1}{2}\left(\Jacobithetatau{3}@{0}{ix}-1\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\omega(x)\defeq\sum_{n=1}^{\infty}e^{-n^{2}\pi x} = \frac{1}{2}\left(\Jacobithetatau{3}@{0}{ix}-1\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>omega(x) = sum(exp(- (n)^(2)* Pi*x), n = 1..infinity) = (1)/(2)*(JacobiTheta3(0,exp(I*Pi*I*x))- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Omega][x] == Sum[Exp[- (n)^(2)* Pi*x], {n, 1, Infinity}, GenerateConditions->None] == Divide[1,2]*(EllipticTheta[3, 0, Exp[I*Pi*(I*x)]]- 1)</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.008983297533541545, False] | ||
Test Values: {Rule[x, 1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.008983297533541545, False] | Test Values: {Rule[x, 1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.008983297533541545, False] | ||
Test Values: {Rule[x, 1.5], Rule[ω, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[ω, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E15 25.5.E15] | | | [https://dlmf.nist.gov/25.5.E15 25.5.E15] || <math qid="Q7628">\Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi}\*\int_{0}^{\infty}(\ln@{1+x}-\digamma@{1+x})x^{-s}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi}\*\int_{0}^{\infty}(\ln@{1+x}-\digamma@{1+x})x^{-s}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(s - 1)+(sin(Pi*s))/(Pi)* int((ln(1 + x)- Psi(1 + x))*(x)^(- s), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,s - 1]+Divide[Sin[Pi*s],Pi]* Integrate[(Log[1 + x]- PolyGamma[1 + x])*(x)^(- s), {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(-infinity) | ||
Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity) | Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity) | ||
Test Values: {s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E16 25.5.E16] | | | [https://dlmf.nist.gov/25.5.E16 25.5.E16] || <math qid="Q7629">\Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi(s-1)}\*\int_{0}^{\infty}\left(\frac{1}{1+x}-\digamma'@{1+x}\right)x^{1-s}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi(s-1)}\*\int_{0}^{\infty}\left(\frac{1}{1+x}-\digamma'@{1+x}\right)x^{1-s}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(s) = (1)/(s - 1)+(sin(Pi*s))/(Pi*(s - 1))* int(((1)/(1 + x)- subs( temp=1 + x, diff( Psi(temp), temp$(1) ) ))*(x)^(1 - s), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[1,s - 1]+Divide[Sin[Pi*s],Pi*(s - 1)]* Integrate[(Divide[1,1 + x]- (D[PolyGamma[temp], {temp, 1}]/.temp-> 1 + x))*(x)^(1 - s), {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(-infinity) | ||
Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity) | Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity) | ||
Test Values: {s = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {s = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E17 25.5.E17] | | | [https://dlmf.nist.gov/25.5.E17 25.5.E17] || <math qid="Q7630">\Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi}\int_{0}^{\infty}\left(\EulerConstant+\digamma@{1+x}\right)x^{-s-1}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi}\int_{0}^{\infty}\left(\EulerConstant+\digamma@{1+x}\right)x^{-s-1}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(1 + s) = (sin(Pi*s))/(Pi)*int((gamma + Psi(1 + x))*(x)^(- s - 1), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[1 + s] == Divide[Sin[Pi*s],Pi]*Integrate[(EulerGamma + PolyGamma[1 + x])*(x)^(- s - 1), {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(-infinity) | ||
Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(-infinity) | Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(-infinity) | ||
Test Values: {s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E18 25.5.E18] | | | [https://dlmf.nist.gov/25.5.E18 25.5.E18] || <math qid="Q7631">\Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi s}\int_{0}^{\infty}\digamma'@{1+x}x^{-s}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi s}\int_{0}^{\infty}\digamma'@{1+x}x^{-s}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(1 + s) = (sin(Pi*s))/(Pi*s)*int(subs( temp=1 + x, diff( Psi(temp), temp$(1) ) )*(x)^(- s), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[1 + s] == Divide[Sin[Pi*s],Pi*s]*Integrate[(D[PolyGamma[temp], {temp, 1}]/.temp-> 1 + x)*(x)^(- s), {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity) | ||
Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity) | Test Values: {s = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity) | ||
Test Values: {s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.225514223589735984806690657246494542888138*^+10484, 2.5458720000534374*^-17] | Test Values: {s = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.225514223589735984806690657246494542888138*^+10484, 2.5458720000534374*^-17] | ||
Line 69: | Line 69: | ||
Test Values: {Rule[s, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[s, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E19 25.5.E19] | | | [https://dlmf.nist.gov/25.5.E19 25.5.E19] || <math qid="Q7632">\Riemannzeta@{m+s} = (-1)^{m-1}\frac{\EulerGamma@{s}\sin@{\pi s}}{\pi\EulerGamma@{m+s}}\*\int_{0}^{\infty}\digamma^{(m)}@{1+x}x^{-s}\diff{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{m+s} = (-1)^{m-1}\frac{\EulerGamma@{s}\sin@{\pi s}}{\pi\EulerGamma@{m+s}}\*\int_{0}^{\infty}\digamma^{(m)}@{1+x}x^{-s}\diff{x}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(m+s)} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(m + s) = (- 1)^(m - 1)*(GAMMA(s)*sin(Pi*s))/(Pi*GAMMA(m + s))* int(subs( temp=1 + x, diff( Psi(temp), temp$(m) ) )*(x)^(- s), x = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[m + s] == (- 1)^(m - 1)*Divide[Gamma[s]*Sin[Pi*s],Pi*Gamma[m + s]]* Integrate[(D[PolyGamma[temp], {temp, m}]/.temp-> 1 + x)*(x)^(- s), {x, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity) | ||
Test Values: {s = 3/2, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(-infinity) | Test Values: {s = 3/2, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(-infinity) | ||
Test Values: {s = 2, m = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out | Test Values: {s = 2, m = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E20 25.5.E20] | | | [https://dlmf.nist.gov/25.5.E20 25.5.E20] || <math qid="Q7633">\Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i}\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}-1}\diff{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i}\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}-1}\diff{z}</syntaxhighlight> || <math>\realpart@@{(1-s)} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (GAMMA(1 - s))/(2*Pi*I)*int(((z)^(s - 1))/(exp(- z)- 1), z = - infinity..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[Gamma[1 - s],2*Pi*I]*Integrate[Divide[(z)^(s - 1),Exp[- z]- 1], {z, - Infinity, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/25.5.E21 25.5.E21] | | | [https://dlmf.nist.gov/25.5.E21 25.5.E21] || <math qid="Q7634">\Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i(1-2^{1-s})}\*\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}+1}\diff{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i(1-2^{1-s})}\*\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}+1}\diff{z}</syntaxhighlight> || <math>\realpart@@{(1-s)} > 0</math> || <syntaxhighlight lang=mathematica>Zeta(s) = (GAMMA(1 - s))/(2*Pi*I*(1 - (2)^(1 - s)))* int(((z)^(s - 1))/(exp(- z)+ 1), z = - infinity..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[s] == Divide[Gamma[1 - s],2*Pi*I*(1 - (2)^(1 - s))]* Integrate[Divide[(z)^(s - 1),Exp[- z]+ 1], {z, - Infinity, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:03, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
25.5.E1 | \Riemannzeta@{s} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}\diff{x} |
Zeta(s) = (1)/(GAMMA(s))*int(((x)^(s - 1))/(exp(x)- 1), x = 0..infinity)
|
Zeta[s] == Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1),Exp[x]- 1], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
25.5.E2 | \Riemannzeta@{s} = \frac{1}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}-1)^{2}}\diff{x} |
Zeta(s) = (1)/(GAMMA(s + 1))*int((exp(x)*(x)^(s))/((exp(x)- 1)^(2)), x = 0..infinity)
|
Zeta[s] == Divide[1,Gamma[s + 1]]*Integrate[Divide[Exp[x]*(x)^(s),(Exp[x]- 1)^(2)], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 2] | Successful [Tested: 2] | |
25.5.E3 | \Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}+1}\diff{x} |
Zeta(s) = (1)/((1 - (2)^(1 - s))*GAMMA(s))*int(((x)^(s - 1))/(exp(x)+ 1), x = 0..infinity)
|
Zeta[s] == Divide[1,(1 - (2)^(1 - s))*Gamma[s]]*Integrate[Divide[(x)^(s - 1),Exp[x]+ 1], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
25.5.E4 | \Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}+1)^{2}}\diff{x} |
Zeta(s) = (1)/((1 - (2)^(1 - s))*GAMMA(s + 1))*int((exp(x)*(x)^(s))/((exp(x)+ 1)^(2)), x = 0..infinity)
|
Zeta[s] == Divide[1,(1 - (2)^(1 - s))*Gamma[s + 1]]*Integrate[Divide[Exp[x]*(x)^(s),(Exp[x]+ 1)^(2)], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 3] | Successful [Tested: 3] | |
25.5.E5 | \Riemannzeta@{s} = -s\int_{0}^{\infty}\frac{x-\floor{x}-\frac{1}{2}}{x^{s+1}}\diff{x} |
Zeta(s) = - s*int((x - floor(x)-(1)/(2))/((x)^(s + 1)), x = 0..infinity)
|
Zeta[s] == - s*Integrate[Divide[x - Floor[x]-Divide[1,2],(x)^(s + 1)], {x, 0, Infinity}, GenerateConditions->None]
|
Error | Aborted | - | Failed [1 / 1]
Result: Complex[-2500601.4984594644, 2.5458720000534374*^-17]
Test Values: {Rule[s, -0.5]}
| |
25.5.E6 | \Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}\right)\frac{x^{s-1}}{e^{x}}\diff{x} |
Zeta(s) = (1)/(2)+(1)/(s - 1)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2))*((x)^(s - 1))/(exp(x)), x = 0..infinity)
|
Zeta[s] == Divide[1,2]+Divide[1,s - 1]+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2])*Divide[(x)^(s - 1),Exp[x]], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 3] | Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[s, 1.5]}
Result: Indeterminate
Test Values: {Rule[s, 0.5]}
... skip entries to safe data | |
25.5.E7 | \Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}\Pochhammersym{s}{2m-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}-\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}x^{2m-1}\right)\frac{x^{s-1}}{e^{x}}\diff{x} |
Zeta(s) = (1)/(2)+(1)/(s - 1)+ sum((bernoulli(2*m))/(factorial(2*m))*pochhammer(s, 2*m - 1)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2)- sum((bernoulli(2*m))/(factorial(2*m))*(x)^(2*m - 1), m = 1..n))*((x)^(s - 1))/(exp(x)), x = 0..infinity), m = 1..n)
|
Zeta[s] == Divide[1,2]+Divide[1,s - 1]+ Sum[Divide[BernoulliB[2*m],(2*m)!]*Pochhammer[s, 2*m - 1]+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2]- Sum[Divide[BernoulliB[2*m],(2*m)!]*(x)^(2*m - 1), {m, 1, n}, GenerateConditions->None])*Divide[(x)^(s - 1),Exp[x]], {x, 0, Infinity}, GenerateConditions->None], {m, 1, n}, GenerateConditions->None]
|
Aborted | Aborted | Failed [2 / 3] Result: .1027534444e-1
Test Values: {s = 3/2, n = 3}
Result: .24417579e-1
Test Values: {s = 2, n = 3}
|
Skipped - Because timed out | |
25.5.E8 | \Riemannzeta@{s} = \frac{1}{2(1-2^{-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{\sinh@@{x}}\diff{x} |
Zeta(s) = (1)/(2*(1 - (2)^(- s))*GAMMA(s))*int(((x)^(s - 1))/(sinh(x)), x = 0..infinity)
|
Zeta[s] == Divide[1,2*(1 - (2)^(- s))*Gamma[s]]*Integrate[Divide[(x)^(s - 1),Sinh[x]], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
25.5.E9 | \Riemannzeta@{s} = \frac{2^{s-1}}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{x^{s}}{(\sinh@@{x})^{2}}\diff{x} |
Zeta(s) = ((2)^(s - 1))/(GAMMA(s + 1))*int(((x)^(s))/((sinh(x))^(2)), x = 0..infinity)
|
Zeta[s] == Divide[(2)^(s - 1),Gamma[s + 1]]*Integrate[Divide[(x)^(s),(Sinh[x])^(2)], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 2] | Skipped - Because timed out | |
25.5.E10 | \Riemannzeta@{s} = \frac{2^{s-1}}{1-2^{1-s}}\int_{0}^{\infty}\frac{\cos@{s\atan@@{x}}}{(1+x^{2})^{s/2}\cosh@{\frac{1}{2}\pi x}}\diff{x} |
|
Zeta(s) = ((2)^(s - 1))/(1 - (2)^(1 - s))*int((cos(s*arctan(x)))/((1 + (x)^(2))^(s/2)* cosh((1)/(2)*Pi*x)), x = 0..infinity)
|
Zeta[s] == Divide[(2)^(s - 1),1 - (2)^(1 - s)]*Integrate[Divide[Cos[s*ArcTan[x]],(1 + (x)^(2))^(s/2)* Cosh[Divide[1,2]*Pi*x]], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 6] | Skipped - Because timed out |
25.5.E11 | \Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+2\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{2\pi x}-1)}\diff{x} |
|
Zeta(s) = (1)/(2)+(1)/(s - 1)+ 2*int((sin(s*arctan(x)))/((1 + (x)^(2))^(s/2)*(exp(2*Pi*x)- 1)), x = 0..infinity)
|
Zeta[s] == Divide[1,2]+Divide[1,s - 1]+ 2*Integrate[Divide[Sin[s*ArcTan[x]],(1 + (x)^(2))^(s/2)*(Exp[2*Pi*x]- 1)], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 6] | Successful [Tested: 6] |
25.5.E12 | \Riemannzeta@{s} = \frac{2^{s-1}}{s-1}-2^{s}\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{\pi x}+1)}\diff{x} |
|
Zeta(s) = ((2)^(s - 1))/(s - 1)- (2)^(s)* int((sin(s*arctan(x)))/((1 + (x)^(2))^(s/2)*(exp(Pi*x)+ 1)), x = 0..infinity)
|
Zeta[s] == Divide[(2)^(s - 1),s - 1]- (2)^(s)* Integrate[Divide[Sin[s*ArcTan[x]],(1 + (x)^(2))^(s/2)*(Exp[Pi*x]+ 1)], {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 6] | Successful [Tested: 6] |
25.5.E13 | \Riemannzeta@{s} = \frac{\pi^{s/2}}{s(s-1)\EulerGamma@{\frac{1}{2}s}}+\frac{\pi^{s/2}}{\EulerGamma@{\frac{1}{2}s}}\*\int_{1}^{\infty}\left(x^{s/2}+x^{(1-s)/2}\right)\frac{\omega(x)}{x}\diff{x} |
Zeta(s) = ((Pi)^(s/2))/(s*(s - 1)*GAMMA((1)/(2)*s))+((Pi)^(s/2))/(GAMMA((1)/(2)*s))* int(((x)^(s/2)+ (x)^((1 - s)/2))*(omega(x))/(x), x = 1..infinity)
|
Zeta[s] == Divide[(Pi)^(s/2),s*(s - 1)*Gamma[Divide[1,2]*s]]+Divide[(Pi)^(s/2),Gamma[Divide[1,2]*s]]* Integrate[((x)^(s/2)+ (x)^((1 - s)/2))*Divide[\[Omega][x],x], {x, 1, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [30 / 30] Result: Float(infinity)+Float(infinity)*I
Test Values: {omega = 1/2*3^(1/2)+1/2*I, s = 3/2}
Result: Float(infinity)+Float(infinity)*I
Test Values: {omega = 1/2*3^(1/2)+1/2*I, s = 1/2}
... skip entries to safe data |
Skipped - Because timed out | |
25.5.E14 | \omega(x)\defeq\sum_{n=1}^{\infty}e^{-n^{2}\pi x} = \frac{1}{2}\left(\Jacobithetatau{3}@{0}{ix}-1\right) |
|
omega(x) = sum(exp(- (n)^(2)* Pi*x), n = 1..infinity) = (1)/(2)*(JacobiTheta3(0,exp(I*Pi*I*x))- 1)
|
\[Omega][x] == Sum[Exp[- (n)^(2)* Pi*x], {n, 1, Infinity}, GenerateConditions->None] == Divide[1,2]*(EllipticTheta[3, 0, Exp[I*Pi*(I*x)]]- 1)
|
Failure | Failure | Error | Failed [30 / 30]
Result: Plus[-0.008983297533541545, False]
Test Values: {Rule[x, 1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[-0.008983297533541545, False]
Test Values: {Rule[x, 1.5], Rule[ω, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
25.5.E15 | \Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi}\*\int_{0}^{\infty}(\ln@{1+x}-\digamma@{1+x})x^{-s}\diff{x} |
|
Zeta(s) = (1)/(s - 1)+(sin(Pi*s))/(Pi)* int((ln(1 + x)- Psi(1 + x))*(x)^(- s), x = 0..infinity)
|
Zeta[s] == Divide[1,s - 1]+Divide[Sin[Pi*s],Pi]* Integrate[(Log[1 + x]- PolyGamma[1 + x])*(x)^(- s), {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [5 / 6] Result: Float(-infinity)
Test Values: {s = -3/2}
Result: Float(infinity)
Test Values: {s = 3/2}
... skip entries to safe data |
Skipped - Because timed out |
25.5.E16 | \Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi(s-1)}\*\int_{0}^{\infty}\left(\frac{1}{1+x}-\digamma'@{1+x}\right)x^{1-s}\diff{x} |
|
Zeta(s) = (1)/(s - 1)+(sin(Pi*s))/(Pi*(s - 1))* int(((1)/(1 + x)- subs( temp=1 + x, diff( Psi(temp), temp$(1) ) ))*(x)^(1 - s), x = 0..infinity)
|
Zeta[s] == Divide[1,s - 1]+Divide[Sin[Pi*s],Pi*(s - 1)]* Integrate[(Divide[1,1 + x]- (D[PolyGamma[temp], {temp, 1}]/.temp-> 1 + x))*(x)^(1 - s), {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [4 / 6] Result: Float(-infinity)
Test Values: {s = -3/2}
Result: Float(infinity)
Test Values: {s = -1/2}
... skip entries to safe data |
Skipped - Because timed out |
25.5.E17 | \Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi}\int_{0}^{\infty}\left(\EulerConstant+\digamma@{1+x}\right)x^{-s-1}\diff{x} |
|
Zeta(1 + s) = (sin(Pi*s))/(Pi)*int((gamma + Psi(1 + x))*(x)^(- s - 1), x = 0..infinity)
|
Zeta[1 + s] == Divide[Sin[Pi*s],Pi]*Integrate[(EulerGamma + PolyGamma[1 + x])*(x)^(- s - 1), {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [6 / 6] Result: Float(-infinity)
Test Values: {s = -3/2}
Result: Float(-infinity)
Test Values: {s = 3/2}
... skip entries to safe data |
Skipped - Because timed out |
25.5.E18 | \Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi s}\int_{0}^{\infty}\digamma'@{1+x}x^{-s}\diff{x} |
|
Zeta(1 + s) = (sin(Pi*s))/(Pi*s)*int(subs( temp=1 + x, diff( Psi(temp), temp$(1) ) )*(x)^(- s), x = 0..infinity)
|
Zeta[1 + s] == Divide[Sin[Pi*s],Pi*s]*Integrate[(D[PolyGamma[temp], {temp, 1}]/.temp-> 1 + x)*(x)^(- s), {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [5 / 6] Result: Float(infinity)
Test Values: {s = -3/2}
Result: Float(infinity)
Test Values: {s = 3/2}
... skip entries to safe data |
Failed [5 / 6]
Result: Complex[1.225514223589735984806690657246494542888138*^+10484, 2.5458720000534374*^-17]
Test Values: {Rule[s, -1.5]}
Result: 2.9996624622276097*^37
Test Values: {Rule[s, 1.5]}
... skip entries to safe data |
25.5.E19 | \Riemannzeta@{m+s} = (-1)^{m-1}\frac{\EulerGamma@{s}\sin@{\pi s}}{\pi\EulerGamma@{m+s}}\*\int_{0}^{\infty}\digamma^{(m)}@{1+x}x^{-s}\diff{x} |
Zeta(m + s) = (- 1)^(m - 1)*(GAMMA(s)*sin(Pi*s))/(Pi*GAMMA(m + s))* int(subs( temp=1 + x, diff( Psi(temp), temp$(m) ) )*(x)^(- s), x = 0..infinity)
|
Zeta[m + s] == (- 1)^(m - 1)*Divide[Gamma[s]*Sin[Pi*s],Pi*Gamma[m + s]]* Integrate[(D[PolyGamma[temp], {temp, m}]/.temp-> 1 + x)*(x)^(- s), {x, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [2 / 3] Result: Float(infinity)
Test Values: {s = 3/2, m = 3}
Result: Float(-infinity)
Test Values: {s = 2, m = 3}
|
Skipped - Because timed out | |
25.5.E20 | \Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i}\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}-1}\diff{z} |
Zeta(s) = (GAMMA(1 - s))/(2*Pi*I)*int(((z)^(s - 1))/(exp(- z)- 1), z = - infinity..(0 +))
|
Zeta[s] == Divide[Gamma[1 - s],2*Pi*I]*Integrate[Divide[(z)^(s - 1),Exp[- z]- 1], {z, - Infinity, (0 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
25.5.E21 | \Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i(1-2^{1-s})}\*\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}+1}\diff{z} |
Zeta(s) = (GAMMA(1 - s))/(2*Pi*I*(1 - (2)^(1 - s)))* int(((z)^(s - 1))/(exp(- z)+ 1), z = - infinity..(0 +))
|
Zeta[s] == Divide[Gamma[1 - s],2*Pi*I*(1 - (2)^(1 - s))]* Integrate[Divide[(z)^(s - 1),Exp[- z]+ 1], {z, - Infinity, (0 +)}, GenerateConditions->None]
|
Error | Failure | - | Error |