24.7: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E1 24.7.E1] | | | [https://dlmf.nist.gov/24.7.E1 24.7.E1] || <math qid="Q7477">\BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E1 24.7.E1] | | | [https://dlmf.nist.gov/24.7.E1 24.7.E1] || <math qid="Q7477">(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity) = (- 1)^(n + 1)*(2*n)/(1 - (2)^(1 - 2*n))*int((t)^(2*n - 1)* exp(- Pi*t)*sech(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)*Divide[2*n,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E2 24.7.E2] | | | [https://dlmf.nist.gov/24.7.E2 24.7.E2] || <math qid="Q7478">\BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E2 24.7.E2] | | | [https://dlmf.nist.gov/24.7.E2 24.7.E2] || <math qid="Q7478">(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity) = (- 1)^(n + 1)* 2*n*int((t)^(2*n - 1)* exp(- Pi*t)*csch(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)* 2*n*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Csch[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E3 24.7.E3] | | | [https://dlmf.nist.gov/24.7.E3 24.7.E3] || <math qid="Q7479">\BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)*(Pi)/(1 - (2)^(1 - 2*n))*int((t)^(2*n)* (sech(Pi*t))^(2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)*Divide[Pi,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n)* (Sech[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E4 24.7.E4] | | | [https://dlmf.nist.gov/24.7.E4 24.7.E4] || <math qid="Q7480">\BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)* Pi*int((t)^(2*n)* (csch(Pi*t))^(2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)* Pi*Integrate[(t)^(2*n)* (Csch[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E5 24.7.E5] | | | [https://dlmf.nist.gov/24.7.E5 24.7.E5] || <math qid="Q7481">\BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n)*(2*n*(2*n - 1))/(Pi)* int((t)^(2*n - 2)* ln(1 - exp(- 2*Pi*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n)*Divide[2*n*(2*n - 1),Pi]* Integrate[(t)^(2*n - 2)* Log[1 - Exp[- 2*Pi*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E6 24.7.E6] | | | [https://dlmf.nist.gov/24.7.E6 24.7.E6] || <math qid="Q7482">\EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n) = (- 1)^(n)* (2)^(2*n + 1)* int((t)^(2*n)* sech(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n] == (- 1)^(n)* (2)^(2*n + 1)* Integrate[(t)^(2*n)* Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E7 24.7.E7] | | | [https://dlmf.nist.gov/24.7.E7 24.7.E7] || <math qid="Q7483">\BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n, x) = (- 1)^(n + 1)* 2*n * int((cos(2*Pi*x)- exp(- 2*Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n - 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n, x] == (- 1)^(n + 1)* 2*n * Integrate[Divide[Cos[2*Pi*x]- Exp[- 2*Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n - 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1875000000 | ||
Test Values: {x = 3/2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.000000000 | Test Values: {x = 3/2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.000000000 | ||
Test Values: {x = 2, n = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out | Test Values: {x = 2, n = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E8 24.7.E8] | | | [https://dlmf.nist.gov/24.7.E8 24.7.E8] || <math qid="Q7484">\BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n + 1, x) = (- 1)^(n + 1)*(2*n + 1)* int((sin(2*Pi*x))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n + 1, x] == (- 1)^(n + 1)*(2*n + 1)* Integrate[Divide[Sin[2*Pi*x],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7500000000 | ||
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3125000000 | Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3125000000 | ||
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E9 24.7.E9] | | | [https://dlmf.nist.gov/24.7.E9 24.7.E9] || <math qid="Q7485">\EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n, x) = (- 1)^(n)* 4*int((sin(Pi*x)*cosh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n, x] == (- 1)^(n)* 4*Integrate[Divide[Sin[Pi*x]*Cosh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5000000001 | ||
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1249999998 | Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1249999998 | ||
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E10 24.7.E10] | | | [https://dlmf.nist.gov/24.7.E10 24.7.E10] || <math qid="Q7486">\EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n + 1, x) = (- 1)^(n + 1)* 4 * int((cos(Pi*x)*sinh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n + 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n + 1, x] == (- 1)^(n + 1)* 4 * Integrate[Divide[Cos[Pi*x]*Sinh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n + 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2499999999 | ||
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6250000031e-1 | Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6250000031e-1 | ||
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/24.7.E11 24.7.E11] | | | [https://dlmf.nist.gov/24.7.E11 24.7.E11] || <math qid="Q7487">\BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}</syntaxhighlight> || <math>0 < c, c < 1</math> || <syntaxhighlight lang=mathematica>bernoulli(n, x) = (1)/(2*Pi*I)*int((x + t)^(n)*((Pi)/(sin(Pi*t)))^(2), t = - c - I*infinity..- c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[n, x] == Divide[1,2*Pi*I]*Integrate[(x + t)^(n)*(Divide[Pi,Sin[Pi*t]])^(2), {t, - c - I*Infinity, - c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1. | ||
Test Values: {c = 1/2, x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9166666667 | Test Values: {c = 1/2, x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9166666667 | ||
Test Values: {c = 1/2, x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {c = 1/2, x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:02, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
24.7.E1 | \BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} |
|
bernoulli(2*n) = (- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity)
|
BernoulliB[2*n] == (- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
24.7.E1 | (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t} |
|
(- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity) = (- 1)^(n + 1)*(2*n)/(1 - (2)^(1 - 2*n))*int((t)^(2*n - 1)* exp(- Pi*t)*sech(Pi*t), t = 0..infinity)
|
(- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)*Divide[2*n,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
24.7.E2 | \BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} |
|
bernoulli(2*n) = (- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity)
|
BernoulliB[2*n] == (- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
24.7.E2 | (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t} |
|
(- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity) = (- 1)^(n + 1)* 2*n*int((t)^(2*n - 1)* exp(- Pi*t)*csch(Pi*t), t = 0..infinity)
|
(- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)* 2*n*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Csch[Pi*t], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
24.7.E3 | \BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t} |
|
bernoulli(2*n) = (- 1)^(n + 1)*(Pi)/(1 - (2)^(1 - 2*n))*int((t)^(2*n)* (sech(Pi*t))^(2), t = 0..infinity)
|
BernoulliB[2*n] == (- 1)^(n + 1)*Divide[Pi,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n)* (Sech[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 3] | Skipped - Because timed out |
24.7.E4 | \BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t} |
|
bernoulli(2*n) = (- 1)^(n + 1)* Pi*int((t)^(2*n)* (csch(Pi*t))^(2), t = 0..infinity)
|
BernoulliB[2*n] == (- 1)^(n + 1)* Pi*Integrate[(t)^(2*n)* (Csch[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 3] | Skipped - Because timed out |
24.7.E5 | \BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t} |
|
bernoulli(2*n) = (- 1)^(n)*(2*n*(2*n - 1))/(Pi)* int((t)^(2*n - 2)* ln(1 - exp(- 2*Pi*t)), t = 0..infinity)
|
BernoulliB[2*n] == (- 1)^(n)*Divide[2*n*(2*n - 1),Pi]* Integrate[(t)^(2*n - 2)* Log[1 - Exp[- 2*Pi*t]], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
24.7.E6 | \EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t} |
|
euler(2*n) = (- 1)^(n)* (2)^(2*n + 1)* int((t)^(2*n)* sech(Pi*t), t = 0..infinity)
|
EulerE[2*n] == (- 1)^(n)* (2)^(2*n + 1)* Integrate[(t)^(2*n)* Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Successful [Tested: 3] |
24.7.E7 | \BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t} |
|
bernoulli(2*n, x) = (- 1)^(n + 1)* 2*n * int((cos(2*Pi*x)- exp(- 2*Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n - 1), t = 0..infinity)
|
BernoulliB[2*n, x] == (- 1)^(n + 1)* 2*n * Integrate[Divide[Cos[2*Pi*x]- Exp[- 2*Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n - 1), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [2 / 3] Result: .1875000000
Test Values: {x = 3/2, n = 3}
Result: 6.000000000
Test Values: {x = 2, n = 3}
|
Skipped - Because timed out |
24.7.E8 | \BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t} |
|
bernoulli(2*n + 1, x) = (- 1)^(n + 1)*(2*n + 1)* int((sin(2*Pi*x))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)
|
BernoulliB[2*n + 1, x] == (- 1)^(n + 1)*(2*n + 1)* Integrate[Divide[Sin[2*Pi*x],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [6 / 9] Result: .7500000000
Test Values: {x = 3/2, n = 1}
Result: .3125000000
Test Values: {x = 3/2, n = 2}
... skip entries to safe data |
Skipped - Because timed out |
24.7.E9 | \EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t} |
|
euler(2*n, x) = (- 1)^(n)* 4*int((sin(Pi*x)*cosh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)
|
EulerE[2*n, x] == (- 1)^(n)* 4*Integrate[Divide[Sin[Pi*x]*Cosh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [6 / 9] Result: .5000000001
Test Values: {x = 3/2, n = 1}
Result: .1249999998
Test Values: {x = 3/2, n = 2}
... skip entries to safe data |
Skipped - Because timed out |
24.7.E10 | \EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t} |
|
euler(2*n + 1, x) = (- 1)^(n + 1)* 4 * int((cos(Pi*x)*sinh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n + 1), t = 0..infinity)
|
EulerE[2*n + 1, x] == (- 1)^(n + 1)* 4 * Integrate[Divide[Cos[Pi*x]*Sinh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n + 1), {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [6 / 9] Result: .2499999999
Test Values: {x = 3/2, n = 1}
Result: .6250000031e-1
Test Values: {x = 3/2, n = 2}
... skip entries to safe data |
Skipped - Because timed out |
24.7.E11 | \BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t} |
bernoulli(n, x) = (1)/(2*Pi*I)*int((x + t)^(n)*((Pi)/(sin(Pi*t)))^(2), t = - c - I*infinity..- c + I*infinity)
|
BernoulliB[n, x] == Divide[1,2*Pi*I]*Integrate[(x + t)^(n)*(Divide[Pi,Sin[Pi*t]])^(2), {t, - c - I*Infinity, - c + I*Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 9] Result: 1.
Test Values: {c = 1/2, x = 3/2, n = 1}
Result: .9166666667
Test Values: {c = 1/2, x = 3/2, n = 2}
... skip entries to safe data |
Skipped - Because timed out |