24.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/24.7.E1 24.7.E1] || [[Item:Q7477|<math>\BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.7.E1 24.7.E1] || <math qid="Q7477">\BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.7.E1 24.7.E1] || [[Item:Q7477|<math>(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity) = (- 1)^(n + 1)*(2*n)/(1 - (2)^(1 - 2*n))*int((t)^(2*n - 1)* exp(- Pi*t)*sech(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)*Divide[2*n,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.7.E1 24.7.E1] || <math qid="Q7477">(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity) = (- 1)^(n + 1)*(2*n)/(1 - (2)^(1 - 2*n))*int((t)^(2*n - 1)* exp(- Pi*t)*sech(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)*Divide[2*n,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.7.E2 24.7.E2] || [[Item:Q7478|<math>\BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.7.E2 24.7.E2] || <math qid="Q7478">\BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.7.E2 24.7.E2] || [[Item:Q7478|<math>(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity) = (- 1)^(n + 1)* 2*n*int((t)^(2*n - 1)* exp(- Pi*t)*csch(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)* 2*n*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Csch[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.7.E2 24.7.E2] || <math qid="Q7478">(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity) = (- 1)^(n + 1)* 2*n*int((t)^(2*n - 1)* exp(- Pi*t)*csch(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)* 2*n*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Csch[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.7.E3 24.7.E3] || [[Item:Q7479|<math>\BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)*(Pi)/(1 - (2)^(1 - 2*n))*int((t)^(2*n)* (sech(Pi*t))^(2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)*Divide[Pi,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n)* (Sech[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
| [https://dlmf.nist.gov/24.7.E3 24.7.E3] || <math qid="Q7479">\BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)*(Pi)/(1 - (2)^(1 - 2*n))*int((t)^(2*n)* (sech(Pi*t))^(2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)*Divide[Pi,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n)* (Sech[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/24.7.E4 24.7.E4] || [[Item:Q7480|<math>\BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)* Pi*int((t)^(2*n)* (csch(Pi*t))^(2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)* Pi*Integrate[(t)^(2*n)* (Csch[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
| [https://dlmf.nist.gov/24.7.E4 24.7.E4] || <math qid="Q7480">\BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n + 1)* Pi*int((t)^(2*n)* (csch(Pi*t))^(2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n + 1)* Pi*Integrate[(t)^(2*n)* (Csch[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/24.7.E5 24.7.E5] || [[Item:Q7481|<math>\BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n)*(2*n*(2*n - 1))/(Pi)* int((t)^(2*n - 2)* ln(1 - exp(- 2*Pi*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n)*Divide[2*n*(2*n - 1),Pi]* Integrate[(t)^(2*n - 2)* Log[1 - Exp[- 2*Pi*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.7.E5 24.7.E5] || <math qid="Q7481">\BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n) = (- 1)^(n)*(2*n*(2*n - 1))/(Pi)* int((t)^(2*n - 2)* ln(1 - exp(- 2*Pi*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n] == (- 1)^(n)*Divide[2*n*(2*n - 1),Pi]* Integrate[(t)^(2*n - 2)* Log[1 - Exp[- 2*Pi*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.7.E6 24.7.E6] || [[Item:Q7482|<math>\EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n) = (- 1)^(n)* (2)^(2*n + 1)* int((t)^(2*n)* sech(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n] == (- 1)^(n)* (2)^(2*n + 1)* Integrate[(t)^(2*n)* Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.7.E6 24.7.E6] || <math qid="Q7482">\EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n) = (- 1)^(n)* (2)^(2*n + 1)* int((t)^(2*n)* sech(Pi*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n] == (- 1)^(n)* (2)^(2*n + 1)* Integrate[(t)^(2*n)* Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.7.E7 24.7.E7] || [[Item:Q7483|<math>\BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n, x) = (- 1)^(n + 1)* 2*n * int((cos(2*Pi*x)- exp(- 2*Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n - 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n, x] == (- 1)^(n + 1)* 2*n * Integrate[Divide[Cos[2*Pi*x]- Exp[- 2*Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n - 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1875000000
| [https://dlmf.nist.gov/24.7.E7 24.7.E7] || <math qid="Q7483">\BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n, x) = (- 1)^(n + 1)* 2*n * int((cos(2*Pi*x)- exp(- 2*Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n - 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n, x] == (- 1)^(n + 1)* 2*n * Integrate[Divide[Cos[2*Pi*x]- Exp[- 2*Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n - 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1875000000
Test Values: {x = 3/2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.000000000
Test Values: {x = 3/2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.000000000
Test Values: {x = 2, n = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out
Test Values: {x = 2, n = 3}</syntaxhighlight><br></div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/24.7.E8 24.7.E8] || [[Item:Q7484|<math>\BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n + 1, x) = (- 1)^(n + 1)*(2*n + 1)* int((sin(2*Pi*x))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n + 1, x] == (- 1)^(n + 1)*(2*n + 1)* Integrate[Divide[Sin[2*Pi*x],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7500000000
| [https://dlmf.nist.gov/24.7.E8 24.7.E8] || <math qid="Q7484">\BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>bernoulli(2*n + 1, x) = (- 1)^(n + 1)*(2*n + 1)* int((sin(2*Pi*x))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[2*n + 1, x] == (- 1)^(n + 1)*(2*n + 1)* Integrate[Divide[Sin[2*Pi*x],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7500000000
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3125000000
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3125000000
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/24.7.E9 24.7.E9] || [[Item:Q7485|<math>\EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n, x) = (- 1)^(n)* 4*int((sin(Pi*x)*cosh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n, x] == (- 1)^(n)* 4*Integrate[Divide[Sin[Pi*x]*Cosh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5000000001
| [https://dlmf.nist.gov/24.7.E9 24.7.E9] || <math qid="Q7485">\EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n, x) = (- 1)^(n)* 4*int((sin(Pi*x)*cosh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n, x] == (- 1)^(n)* 4*Integrate[Divide[Sin[Pi*x]*Cosh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5000000001
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1249999998
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1249999998
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/24.7.E10 24.7.E10] || [[Item:Q7486|<math>\EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n + 1, x) = (- 1)^(n + 1)* 4 * int((cos(Pi*x)*sinh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n + 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n + 1, x] == (- 1)^(n + 1)* 4 * Integrate[Divide[Cos[Pi*x]*Sinh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n + 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2499999999
| [https://dlmf.nist.gov/24.7.E10 24.7.E10] || <math qid="Q7486">\EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>euler(2*n + 1, x) = (- 1)^(n + 1)* 4 * int((cos(Pi*x)*sinh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n + 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerE[2*n + 1, x] == (- 1)^(n + 1)* 4 * Integrate[Divide[Cos[Pi*x]*Sinh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n + 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2499999999
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6250000031e-1
Test Values: {x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6250000031e-1
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/24.7.E11 24.7.E11] || [[Item:Q7487|<math>\BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}</syntaxhighlight> || <math>0 < c, c < 1</math> || <syntaxhighlight lang=mathematica>bernoulli(n, x) = (1)/(2*Pi*I)*int((x + t)^(n)*((Pi)/(sin(Pi*t)))^(2), t = - c - I*infinity..- c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[n, x] == Divide[1,2*Pi*I]*Integrate[(x + t)^(n)*(Divide[Pi,Sin[Pi*t]])^(2), {t, - c - I*Infinity, - c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.
| [https://dlmf.nist.gov/24.7.E11 24.7.E11] || <math qid="Q7487">\BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}</syntaxhighlight> || <math>0 < c, c < 1</math> || <syntaxhighlight lang=mathematica>bernoulli(n, x) = (1)/(2*Pi*I)*int((x + t)^(n)*((Pi)/(sin(Pi*t)))^(2), t = - c - I*infinity..- c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BernoulliB[n, x] == Divide[1,2*Pi*I]*Integrate[(x + t)^(n)*(Divide[Pi,Sin[Pi*t]])^(2), {t, - c - I*Infinity, - c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.
Test Values: {c = 1/2, x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9166666667
Test Values: {c = 1/2, x = 3/2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9166666667
Test Values: {c = 1/2, x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {c = 1/2, x = 3/2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 12:02, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
24.7.E1 B 2 n = ( - 1 ) n + 1 4 n 1 - 2 1 - 2 n 0 t 2 n - 1 e 2 π t + 1 d t Bernoulli-number-B 2 𝑛 superscript 1 𝑛 1 4 𝑛 1 superscript 2 1 2 𝑛 superscript subscript 0 superscript 𝑡 2 𝑛 1 superscript 𝑒 2 𝜋 𝑡 1 𝑡 {\displaystyle{\displaystyle B_{2n}=(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{% \infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\mathrm{d}t}}
\BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}

bernoulli(2*n) = (- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity)
BernoulliB[2*n] == (- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
24.7.E1 ( - 1 ) n + 1 4 n 1 - 2 1 - 2 n 0 t 2 n - 1 e 2 π t + 1 d t = ( - 1 ) n + 1 2 n 1 - 2 1 - 2 n 0 t 2 n - 1 e - π t sech ( π t ) d t superscript 1 𝑛 1 4 𝑛 1 superscript 2 1 2 𝑛 superscript subscript 0 superscript 𝑡 2 𝑛 1 superscript 𝑒 2 𝜋 𝑡 1 𝑡 superscript 1 𝑛 1 2 𝑛 1 superscript 2 1 2 𝑛 superscript subscript 0 superscript 𝑡 2 𝑛 1 superscript 𝑒 𝜋 𝑡 𝜋 𝑡 𝑡 {\displaystyle{\displaystyle(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}% \frac{t^{2n-1}}{e^{2\pi t}+1}\mathrm{d}t=(-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{% 0}^{\infty}t^{2n-1}e^{-\pi t}\operatorname{sech}\left(\pi t\right)\mathrm{d}t}}
(-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}

(- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity) = (- 1)^(n + 1)*(2*n)/(1 - (2)^(1 - 2*n))*int((t)^(2*n - 1)* exp(- Pi*t)*sech(Pi*t), t = 0..infinity)
(- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)*Divide[2*n,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 3]
24.7.E2 B 2 n = ( - 1 ) n + 1 4 n 0 t 2 n - 1 e 2 π t - 1 d t Bernoulli-number-B 2 𝑛 superscript 1 𝑛 1 4 𝑛 superscript subscript 0 superscript 𝑡 2 𝑛 1 superscript 𝑒 2 𝜋 𝑡 1 𝑡 {\displaystyle{\displaystyle B_{2n}=(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1% }}{e^{2\pi t}-1}\mathrm{d}t}}
\BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}

bernoulli(2*n) = (- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity)
BernoulliB[2*n] == (- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
24.7.E2 ( - 1 ) n + 1 4 n 0 t 2 n - 1 e 2 π t - 1 d t = ( - 1 ) n + 1 2 n 0 t 2 n - 1 e - π t csch ( π t ) d t superscript 1 𝑛 1 4 𝑛 superscript subscript 0 superscript 𝑡 2 𝑛 1 superscript 𝑒 2 𝜋 𝑡 1 𝑡 superscript 1 𝑛 1 2 𝑛 superscript subscript 0 superscript 𝑡 2 𝑛 1 superscript 𝑒 𝜋 𝑡 𝜋 𝑡 𝑡 {\displaystyle{\displaystyle(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2% \pi t}-1}\mathrm{d}t=(-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}% \operatorname{csch}\left(\pi t\right)\mathrm{d}t}}
(-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}

(- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity) = (- 1)^(n + 1)* 2*n*int((t)^(2*n - 1)* exp(- Pi*t)*csch(Pi*t), t = 0..infinity)
(- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None] == (- 1)^(n + 1)* 2*n*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Csch[Pi*t], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 3]
24.7.E3 B 2 n = ( - 1 ) n + 1 π 1 - 2 1 - 2 n 0 t 2 n sech 2 ( π t ) d t Bernoulli-number-B 2 𝑛 superscript 1 𝑛 1 𝜋 1 superscript 2 1 2 𝑛 superscript subscript 0 superscript 𝑡 2 𝑛 2 𝜋 𝑡 𝑡 {\displaystyle{\displaystyle B_{2n}=(-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{% \infty}t^{2n}{\operatorname{sech}^{2}}\left(\pi t\right)\mathrm{d}t}}
\BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}

bernoulli(2*n) = (- 1)^(n + 1)*(Pi)/(1 - (2)^(1 - 2*n))*int((t)^(2*n)* (sech(Pi*t))^(2), t = 0..infinity)
BernoulliB[2*n] == (- 1)^(n + 1)*Divide[Pi,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n)* (Sech[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3] Skipped - Because timed out
24.7.E4 B 2 n = ( - 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t Bernoulli-number-B 2 𝑛 superscript 1 𝑛 1 𝜋 superscript subscript 0 superscript 𝑡 2 𝑛 2 𝜋 𝑡 𝑡 {\displaystyle{\displaystyle B_{2n}=(-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}{% \operatorname{csch}^{2}}\left(\pi t\right)\mathrm{d}t}}
\BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}

bernoulli(2*n) = (- 1)^(n + 1)* Pi*int((t)^(2*n)* (csch(Pi*t))^(2), t = 0..infinity)
BernoulliB[2*n] == (- 1)^(n + 1)* Pi*Integrate[(t)^(2*n)* (Csch[Pi*t])^(2), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3] Skipped - Because timed out
24.7.E5 B 2 n = ( - 1 ) n 2 n ( 2 n - 1 ) π 0 t 2 n - 2 ln ( 1 - e - 2 π t ) d t Bernoulli-number-B 2 𝑛 superscript 1 𝑛 2 𝑛 2 𝑛 1 𝜋 superscript subscript 0 superscript 𝑡 2 𝑛 2 1 superscript 𝑒 2 𝜋 𝑡 𝑡 {\displaystyle{\displaystyle B_{2n}=(-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{% \infty}t^{2n-2}\ln\left(1-e^{-2\pi t}\right)\mathrm{d}t}}
\BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}

bernoulli(2*n) = (- 1)^(n)*(2*n*(2*n - 1))/(Pi)* int((t)^(2*n - 2)* ln(1 - exp(- 2*Pi*t)), t = 0..infinity)
BernoulliB[2*n] == (- 1)^(n)*Divide[2*n*(2*n - 1),Pi]* Integrate[(t)^(2*n - 2)* Log[1 - Exp[- 2*Pi*t]], {t, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
24.7.E6 E 2 n = ( - 1 ) n 2 2 n + 1 0 t 2 n sech ( π t ) d t Euler-number-E 2 𝑛 superscript 1 𝑛 superscript 2 2 𝑛 1 superscript subscript 0 superscript 𝑡 2 𝑛 𝜋 𝑡 𝑡 {\displaystyle{\displaystyle E_{2n}=(-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}% \operatorname{sech}\left(\pi t\right)\mathrm{d}t}}
\EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}

euler(2*n) = (- 1)^(n)* (2)^(2*n + 1)* int((t)^(2*n)* sech(Pi*t), t = 0..infinity)
EulerE[2*n] == (- 1)^(n)* (2)^(2*n + 1)* Integrate[(t)^(2*n)* Sech[Pi*t], {t, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 3]
24.7.E7 B 2 n ( x ) = ( - 1 ) n + 1 2 n 0 cos ( 2 π x ) - e - 2 π t cosh ( 2 π t ) - cos ( 2 π x ) t 2 n - 1 d t Bernoulli-polynomial-B 2 𝑛 𝑥 superscript 1 𝑛 1 2 𝑛 superscript subscript 0 2 𝜋 𝑥 superscript 𝑒 2 𝜋 𝑡 2 𝜋 𝑡 2 𝜋 𝑥 superscript 𝑡 2 𝑛 1 𝑡 {\displaystyle{\displaystyle B_{2n}\left(x\right)=(-1)^{n+1}2n\*\int_{0}^{% \infty}\frac{\cos\left(2\pi x\right)-e^{-2\pi t}}{\cosh\left(2\pi t\right)-% \cos\left(2\pi x\right)}t^{2n-1}\mathrm{d}t}}
\BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}

bernoulli(2*n, x) = (- 1)^(n + 1)* 2*n * int((cos(2*Pi*x)- exp(- 2*Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n - 1), t = 0..infinity)
BernoulliB[2*n, x] == (- 1)^(n + 1)* 2*n * Integrate[Divide[Cos[2*Pi*x]- Exp[- 2*Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n - 1), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted
Failed [2 / 3]
Result: .1875000000
Test Values: {x = 3/2, n = 3}

Result: 6.000000000
Test Values: {x = 2, n = 3}

Skipped - Because timed out
24.7.E8 B 2 n + 1 ( x ) = ( - 1 ) n + 1 ( 2 n + 1 ) 0 sin ( 2 π x ) cosh ( 2 π t ) - cos ( 2 π x ) t 2 n d t Bernoulli-polynomial-B 2 𝑛 1 𝑥 superscript 1 𝑛 1 2 𝑛 1 superscript subscript 0 2 𝜋 𝑥 2 𝜋 𝑡 2 𝜋 𝑥 superscript 𝑡 2 𝑛 𝑡 {\displaystyle{\displaystyle B_{2n+1}\left(x\right)=(-1)^{n+1}(2n+1)\*\int_{0}% ^{\infty}\frac{\sin\left(2\pi x\right)}{\cosh\left(2\pi t\right)-\cos\left(2% \pi x\right)}t^{2n}\mathrm{d}t}}
\BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}

bernoulli(2*n + 1, x) = (- 1)^(n + 1)*(2*n + 1)* int((sin(2*Pi*x))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)
BernoulliB[2*n + 1, x] == (- 1)^(n + 1)*(2*n + 1)* Integrate[Divide[Sin[2*Pi*x],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted
Failed [6 / 9]
Result: .7500000000
Test Values: {x = 3/2, n = 1}

Result: .3125000000
Test Values: {x = 3/2, n = 2}

... skip entries to safe data
Skipped - Because timed out
24.7.E9 E 2 n ( x ) = ( - 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) - cos ( 2 π x ) t 2 n d t Euler-polynomial-E 2 𝑛 𝑥 superscript 1 𝑛 4 superscript subscript 0 𝜋 𝑥 𝜋 𝑡 2 𝜋 𝑡 2 𝜋 𝑥 superscript 𝑡 2 𝑛 𝑡 {\displaystyle{\displaystyle E_{2n}\left(x\right)=(-1)^{n}4\int_{0}^{\infty}% \frac{\sin\left(\pi x\right)\cosh\left(\pi t\right)}{\cosh\left(2\pi t\right)-% \cos\left(2\pi x\right)}t^{2n}\mathrm{d}t}}
\EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}

euler(2*n, x) = (- 1)^(n)* 4*int((sin(Pi*x)*cosh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity)
EulerE[2*n, x] == (- 1)^(n)* 4*Integrate[Divide[Sin[Pi*x]*Cosh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted
Failed [6 / 9]
Result: .5000000001
Test Values: {x = 3/2, n = 1}

Result: .1249999998
Test Values: {x = 3/2, n = 2}

... skip entries to safe data
Skipped - Because timed out
24.7.E10 E 2 n + 1 ( x ) = ( - 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) - cos ( 2 π x ) t 2 n + 1 d t Euler-polynomial-E 2 𝑛 1 𝑥 superscript 1 𝑛 1 4 superscript subscript 0 𝜋 𝑥 𝜋 𝑡 2 𝜋 𝑡 2 𝜋 𝑥 superscript 𝑡 2 𝑛 1 𝑡 {\displaystyle{\displaystyle E_{2n+1}\left(x\right)=(-1)^{n+1}4\*\int_{0}^{% \infty}\frac{\cos\left(\pi x\right)\sinh\left(\pi t\right)}{\cosh\left(2\pi t% \right)-\cos\left(2\pi x\right)}t^{2n+1}\mathrm{d}t}}
\EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}

euler(2*n + 1, x) = (- 1)^(n + 1)* 4 * int((cos(Pi*x)*sinh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n + 1), t = 0..infinity)
EulerE[2*n + 1, x] == (- 1)^(n + 1)* 4 * Integrate[Divide[Cos[Pi*x]*Sinh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n + 1), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted
Failed [6 / 9]
Result: .2499999999
Test Values: {x = 3/2, n = 1}

Result: .6250000031e-1
Test Values: {x = 3/2, n = 2}

... skip entries to safe data
Skipped - Because timed out
24.7.E11 B n ( x ) = 1 2 π i - c - i - c + i ( x + t ) n ( π sin ( π t ) ) 2 d t Bernoulli-polynomial-B 𝑛 𝑥 1 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 superscript 𝑥 𝑡 𝑛 superscript 𝜋 𝜋 𝑡 2 𝑡 {\displaystyle{\displaystyle B_{n}\left(x\right)=\frac{1}{2\pi i}\int_{-c-i% \infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin\left(\pi t\right)}\right)^{% 2}\mathrm{d}t}}
\BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}
0 < c , c < 1 formulae-sequence 0 𝑐 𝑐 1 {\displaystyle{\displaystyle 0<c,c<1}}
bernoulli(n, x) = (1)/(2*Pi*I)*int((x + t)^(n)*((Pi)/(sin(Pi*t)))^(2), t = - c - I*infinity..- c + I*infinity)
BernoulliB[n, x] == Divide[1,2*Pi*I]*Integrate[(x + t)^(n)*(Divide[Pi,Sin[Pi*t]])^(2), {t, - c - I*Infinity, - c + I*Infinity}, GenerateConditions->None]
Failure Failure
Failed [7 / 9]
Result: 1.
Test Values: {c = 1/2, x = 3/2, n = 1}

Result: .9166666667
Test Values: {c = 1/2, x = 3/2, n = 2}

... skip entries to safe data
Skipped - Because timed out