23.6: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/23.6#Ex1 23.6#Ex1] || [[Item:Q7241|<math>q = e^{i\pi\tau}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q = e^{i\pi\tau}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q = exp(I*Pi*tau)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q == Exp[I*Pi*\[Tau]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/23.6#Ex1 23.6#Ex1] || <math qid="Q7241">q = e^{i\pi\tau}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q = e^{i\pi\tau}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q = exp(I*Pi*tau)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q == Exp[I*Pi*\[Tau]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/23.6#Ex2 23.6#Ex2] || [[Item:Q7242|<math>\tau = \omega_{3}/\omega_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tau = \omega_{3}/\omega_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">tau = omega[3]/omega[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Tau] == Subscript[\[Omega], 3]/Subscript[\[Omega], 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/23.6#Ex2 23.6#Ex2] || <math qid="Q7242">\tau = \omega_{3}/\omega_{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tau = \omega_{3}/\omega_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">tau = omega[3]/omega[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Tau] == Subscript[\[Omega], 3]/Subscript[\[Omega], 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/23.6.E8 23.6.E8] || [[Item:Q7249|<math>\eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>eta[1] = -((Pi)^(2))/(12*omega[1])*(diff( JacobiTheta1(0, q), 0$(3) ))/(diff( JacobiTheta1(0, q), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Eta], 1] == -Divide[(Pi)^(2),12*Subscript[\[Omega], 1]]*Divide[D[EllipticTheta[1, 0, q], {0, 3}],D[EllipticTheta[1, 0, q], {0, 1}]]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[0.712277344720507, -0.4112335167120565], Power[D[0.0
| [https://dlmf.nist.gov/23.6.E8 23.6.E8] || <math qid="Q7249">\eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>eta[1] = -((Pi)^(2))/(12*omega[1])*(diff( JacobiTheta1(0, q), 0$(3) ))/(diff( JacobiTheta1(0, q), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Eta], 1] == -Divide[(Pi)^(2),12*Subscript[\[Omega], 1]]*Divide[D[EllipticTheta[1, 0, q], {0, 3}],D[EllipticTheta[1, 0, q], {0, 1}]]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[0.712277344720507, -0.4112335167120565], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[-0.4112335167120564, -0.712277344720507], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[-0.4112335167120564, -0.712277344720507], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/23.6#Ex5 23.6#Ex5] || [[Item:Q7259|<math>\compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(EllipticK(k))^(2) = (EllipticK(k))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(EllipticK[(k)^2])^(2) == (EllipticK[(k)^2])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/23.6#Ex5 23.6#Ex5] || <math qid="Q7259">\compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(EllipticK(k))^(2) = (EllipticK(k))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(EllipticK[(k)^2])^(2) == (EllipticK[(k)^2])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|}
|}
</div>
</div>

Latest revision as of 12:00, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.6#Ex1 q = e i π τ 𝑞 superscript 𝑒 𝑖 𝜋 𝜏 {\displaystyle{\displaystyle q=e^{i\pi\tau}}}
q = e^{i\pi\tau}

q = exp(I*Pi*tau)
q == Exp[I*Pi*\[Tau]]
Skipped - no semantic math Skipped - no semantic math - -
23.6#Ex2 τ = ω 3 / ω 1 𝜏 subscript 𝜔 3 subscript 𝜔 1 {\displaystyle{\displaystyle\tau=\omega_{3}/\omega_{1}}}
\tau = \omega_{3}/\omega_{1}

tau = omega[3]/omega[1]
\[Tau] == Subscript[\[Omega], 3]/Subscript[\[Omega], 1]
Skipped - no semantic math Skipped - no semantic math - -
23.6.E8 η 1 = - π 2 12 ω 1 θ 1 ′′′ ( 0 , q ) θ 1 ( 0 , q ) subscript 𝜂 1 superscript 𝜋 2 12 subscript 𝜔 1 diffop Jacobi-theta 1 3 0 𝑞 diffop Jacobi-theta 1 1 0 𝑞 {\displaystyle{\displaystyle\eta_{1}=-\frac{\pi^{2}}{12\omega_{1}}\frac{\theta% _{1}'''\left(0,q\right)}{\theta_{1}'\left(0,q\right)}}}
\eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}

eta[1] = -((Pi)^(2))/(12*omega[1])*(diff( JacobiTheta1(0, q), 0$(3) ))/(diff( JacobiTheta1(0, q), 0$(1) ))
Subscript[\[Eta], 1] == -Divide[(Pi)^(2),12*Subscript[\[Omega], 1]]*Divide[D[EllipticTheta[1, 0, q], {0, 3}],D[EllipticTheta[1, 0, q], {0, 1}]]
Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[0.712277344720507, -0.4112335167120565], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[-0.4112335167120564, -0.712277344720507], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.6#Ex5 K 2 = ( K ( k ) ) 2 complete-elliptic-integral-first-kind-K 2 𝑘 superscript complete-elliptic-integral-first-kind-K 𝑘 2 {\displaystyle{\displaystyle{K^{2}}=(K\left(k\right))^{2}}}
\compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}

(EllipticK(k))^(2) = (EllipticK(k))^(2)
(EllipticK[(k)^2])^(2) == (EllipticK[(k)^2])^(2)
Successful Successful - Successful [Tested: 3]