22.16: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/22.16.E1 22.16.E1] || [[Item:Q7120|<math>\Jacobiamk@{x}{k} = \Asin@{\Jacobiellsnk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \Asin@{\Jacobiellsnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == ArcSin[JacobiSN[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185307179586
| [https://dlmf.nist.gov/22.16.E1 22.16.E1] || <math qid="Q7120">\Jacobiamk@{x}{k} = \Asin@{\Jacobiellsnk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \Asin@{\Jacobiellsnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == ArcSin[JacobiSN[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185307179586
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E2 22.16.E2] || [[Item:Q7121|<math>\Jacobiamk@{x+2K}{k} = \Jacobiamk@{x}{k}+\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x+2K}{k} = \Jacobiamk@{x}{k}+\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x + 2*EllipticK(k), k) = JacobiAM(x, k)+ Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x + 2*EllipticK[(k)^2], Power[k, 2]] == JacobiAmplitude[x, Power[k, 2]]+ Pi</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-4.273320998840302, Gudermannian[DirectedInfinity[]]]
| [https://dlmf.nist.gov/22.16.E2 22.16.E2] || <math qid="Q7121">\Jacobiamk@{x+2K}{k} = \Jacobiamk@{x}{k}+\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x+2K}{k} = \Jacobiamk@{x}{k}+\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x + 2*EllipticK(k), k) = JacobiAM(x, k)+ Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x + 2*EllipticK[(k)^2], Power[k, 2]] == JacobiAmplitude[x, Power[k, 2]]+ Pi</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-4.273320998840302, Gudermannian[DirectedInfinity[]]]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E3 22.16.E3] || [[Item:Q7122|<math>\Jacobiamk@{x}{k} = \int_{0}^{x}\Jacobielldnk@{t}{k}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \int_{0}^{x}\Jacobielldnk@{t}{k}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, k) = int(JacobiDN(t, k), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == Integrate[JacobiDN[t, (k)^2], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.16.E3 22.16.E3] || <math qid="Q7122">\Jacobiamk@{x}{k} = \int_{0}^{x}\Jacobielldnk@{t}{k}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \int_{0}^{x}\Jacobielldnk@{t}{k}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, k) = int(JacobiDN(t, k), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == Integrate[JacobiDN[t, (k)^2], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.16.E4 22.16.E4] || [[Item:Q7123|<math>\Jacobiamk@{x}{0} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{0} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, 0) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[0, 2]] == x</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/22.16.E4 22.16.E4] || <math qid="Q7123">\Jacobiamk@{x}{0} = x</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{0} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, 0) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[0, 2]] == x</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/22.16.E5 22.16.E5] || [[Item:Q7124|<math>\Jacobiamk@{x}{1} = \Gudermannian@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{1} = \Gudermannian@{x}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>JacobiAM(x, 1) = arctan(sinh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[1, 2]] == Gudermannian[x]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/22.16.E5 22.16.E5] || <math qid="Q7124">\Jacobiamk@{x}{1} = \Gudermannian@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{1} = \Gudermannian@{x}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>JacobiAM(x, 1) = arctan(sinh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[1, 2]] == Gudermannian[x]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/22.16.E9 22.16.E9] || [[Item:Q7128|<math>\Jacobiamk@{x}{k} = \frac{\pi}{2K}x+2\sum_{n=1}^{\infty}\frac{q^{n}\sin@{2n\zeta}}{n(1+q^{2n})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \frac{\pi}{2K}x+2\sum_{n=1}^{\infty}\frac{q^{n}\sin@{2n\zeta}}{n(1+q^{2n})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, k) = (Pi)/(2*EllipticK(k))*x + 2*sum(((exp(- Pi*EllipticCK(k)/EllipticK(k)))^(n)* sin(2*n*zeta))/(n*(1 +(exp(- Pi*EllipticCK(k)/EllipticK(k)))^(2*n))), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == Divide[Pi,2*EllipticK[(k)^2]]*x + 2*Sum[Divide[(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(n)* Sin[2*n*\[Zeta]],n*(1 +(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(2*n))], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.9977537490349477, 0.49999999999999994], Times[-1.0, Gudermannian[DirectedInfinity[]]]]
| [https://dlmf.nist.gov/22.16.E9 22.16.E9] || <math qid="Q7128">\Jacobiamk@{x}{k} = \frac{\pi}{2K}x+2\sum_{n=1}^{\infty}\frac{q^{n}\sin@{2n\zeta}}{n(1+q^{2n})}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \frac{\pi}{2K}x+2\sum_{n=1}^{\infty}\frac{q^{n}\sin@{2n\zeta}}{n(1+q^{2n})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, k) = (Pi)/(2*EllipticK(k))*x + 2*sum(((exp(- Pi*EllipticCK(k)/EllipticK(k)))^(n)* sin(2*n*zeta))/(n*(1 +(exp(- Pi*EllipticCK(k)/EllipticK(k)))^(2*n))), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == Divide[Pi,2*EllipticK[(k)^2]]*x + 2*Sum[Divide[(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(n)* Sin[2*n*\[Zeta]],n*(1 +(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(2*n))], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.9977537490349477, 0.49999999999999994], Times[-1.0, Gudermannian[DirectedInfinity[]]]]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.6288351638274511, -0.8359897636003678]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.6288351638274511, -0.8359897636003678]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E10 22.16.E10] || [[Item:Q7129|<math>x = \incellintFk@{\phi}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x = \incellintFk@{\phi}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x = EllipticF(sin(phi), k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x == EllipticF[\[Phi], (k)^2]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6791299710-.6773780507*I
| [https://dlmf.nist.gov/22.16.E10 22.16.E10] || <math qid="Q7129">x = \incellintFk@{\phi}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x = \incellintFk@{\phi}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x = EllipticF(sin(phi), k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x == EllipticF[\[Phi], (k)^2]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6791299710-.6773780507*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.016811658-.7182528229*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.016811658-.7182528229*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6791299712710547, -0.6773780505641274]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6791299712710547, -0.6773780505641274]
Line 36: Line 36:
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E11 22.16.E11] || [[Item:Q7130|<math>\Jacobiamk@{x}{k} = \phi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \phi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, k) = phi</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == \[Phi]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2657029410-.5000000000*I
| [https://dlmf.nist.gov/22.16.E11 22.16.E11] || <math qid="Q7130">\Jacobiamk@{x}{k} = \phi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiamk@{x}{k} = \phi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiAM(x, k) = phi</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiAmplitude[x, Power[k, 2]] == \[Phi]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2657029410-.5000000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6844899651-.5000000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6844899651-.5000000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.26570294146607043, -0.49999999999999994]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.26570294146607043, -0.49999999999999994]
Line 42: Line 42:
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E12 22.16.E12] || [[Item:Q7131|<math>\Jacobiellsnk@{x}{k} = \sin@@{\phi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiellsnk@{x}{k} = \sin@@{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiSN(x, k) = sin(phi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiSN[x, (k)^2] == Sin[\[Phi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .461679191e-1-.3375964631*I
| [https://dlmf.nist.gov/22.16.E12 22.16.E12] || <math qid="Q7131">\Jacobiellsnk@{x}{k} = \sin@@{\phi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiellsnk@{x}{k} = \sin@@{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiSN(x, k) = sin(phi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiSN[x, (k)^2] == Sin[\[Phi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .461679191e-1-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6784403409-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6784403409-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.046167919344728525, -0.33759646322287]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.046167919344728525, -0.33759646322287]
Line 48: Line 48:
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E12 22.16.E12] || [[Item:Q7131|<math>\sin@@{\phi} = \sin@{\Jacobiamk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\phi} = \sin@{\Jacobiamk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(phi) = sin(JacobiAM(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[\[Phi]] == Sin[JacobiAmplitude[x, Power[k, 2]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.461679191e-1+.3375964631*I
| [https://dlmf.nist.gov/22.16.E12 22.16.E12] || <math qid="Q7131">\sin@@{\phi} = \sin@{\Jacobiamk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\phi} = \sin@{\Jacobiamk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(phi) = sin(JacobiAM(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[\[Phi]] == Sin[JacobiAmplitude[x, Power[k, 2]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.461679191e-1+.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6784403409+.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6784403409+.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.046167919344728525, 0.33759646322287]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.046167919344728525, 0.33759646322287]
Line 54: Line 54:
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E13 22.16.E13] || [[Item:Q7132|<math>\Jacobiellcnk@{x}{k} = \cos@@{\phi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiellcnk@{x}{k} = \cos@@{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiCN(x, k) = cos(phi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiCN[x, (k)^2] == Cos[\[Phi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3054469840+.3969495503*I
| [https://dlmf.nist.gov/22.16.E13 22.16.E13] || <math qid="Q7132">\Jacobiellcnk@{x}{k} = \cos@@{\phi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Jacobiellcnk@{x}{k} = \cos@@{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiCN(x, k) = cos(phi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiCN[x, (k)^2] == Cos[\[Phi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3054469840+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2530246253+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2530246253+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3054469841149447, 0.3969495502290325]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3054469841149447, 0.3969495502290325]
Line 60: Line 60:
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E13 22.16.E13] || [[Item:Q7132|<math>\cos@@{\phi} = \cos@{\Jacobiamk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\phi} = \cos@{\Jacobiamk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(phi) = cos(JacobiAM(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[\[Phi]] == Cos[JacobiAmplitude[x, Power[k, 2]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3054469840-.3969495503*I
| [https://dlmf.nist.gov/22.16.E13 22.16.E13] || <math qid="Q7132">\cos@@{\phi} = \cos@{\Jacobiamk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\phi} = \cos@{\Jacobiamk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(phi) = cos(JacobiAM(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[\[Phi]] == Cos[JacobiAmplitude[x, Power[k, 2]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3054469840-.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2530246253-.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2530246253-.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3054469841149447, -0.3969495502290325]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3054469841149447, -0.3969495502290325]
Line 66: Line 66:
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E33 22.16.E33] || [[Item:Q7153|<math>\JacobiZetak@{x+K}{k} = \JacobiZetak@{x}{k}-k^{2}\Jacobiellsnk@{x}{k}\Jacobiellcdk@{x}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\JacobiZetak@{x+K}{k} = \JacobiZetak@{x}{k}-k^{2}\Jacobiellsnk@{x}{k}\Jacobiellcdk@{x}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiZeta(x + EllipticK(k), k) = JacobiZeta(x, k)- (k)^(2)* JacobiSN(x, k)*JacobiCD(x, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiZeta[x + EllipticK[(k)^2], k] == JacobiZeta[x, k]- (k)^(2)* JacobiSN[x, (k)^2]*JacobiCD[x, (k)^2]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.09234673295918805, JacobiZeta[DirectedInfinity[], 1.0]]
| [https://dlmf.nist.gov/22.16.E33 22.16.E33] || <math qid="Q7153">\JacobiZetak@{x+K}{k} = \JacobiZetak@{x}{k}-k^{2}\Jacobiellsnk@{x}{k}\Jacobiellcdk@{x}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\JacobiZetak@{x+K}{k} = \JacobiZetak@{x}{k}-k^{2}\Jacobiellsnk@{x}{k}\Jacobiellcdk@{x}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiZeta(x + EllipticK(k), k) = JacobiZeta(x, k)- (k)^(2)* JacobiSN(x, k)*JacobiCD(x, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiZeta[x + EllipticK[(k)^2], k] == JacobiZeta[x, k]- (k)^(2)* JacobiSN[x, (k)^2]*JacobiCD[x, (k)^2]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.09234673295918805, JacobiZeta[DirectedInfinity[], 1.0]]
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.7319699839312124, -0.6260098794347219]
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.7319699839312124, -0.6260098794347219]
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.16.E34 22.16.E34] || [[Item:Q7154|<math>\JacobiZetak@{x+2K}{k} = \JacobiZetak@{x}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\JacobiZetak@{x+2K}{k} = \JacobiZetak@{x}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiZeta(x + 2*EllipticK(k), k) = JacobiZeta(x, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiZeta[x + 2*EllipticK[(k)^2], k] == JacobiZeta[x, k]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.9974949866040544, JacobiZeta[DirectedInfinity[], 1.0]]
| [https://dlmf.nist.gov/22.16.E34 22.16.E34] || <math qid="Q7154">\JacobiZetak@{x+2K}{k} = \JacobiZetak@{x}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\JacobiZetak@{x+2K}{k} = \JacobiZetak@{x}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiZeta(x + 2*EllipticK(k), k) = JacobiZeta(x, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiZeta[x + 2*EllipticK[(k)^2], k] == JacobiZeta[x, k]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.9974949866040544, JacobiZeta[DirectedInfinity[], 1.0]]
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.2870190432201134, -5.437509139287473]
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.2870190432201134, -5.437509139287473]
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:59, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
22.16.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{x}{k} = \Asin@{\Jacobiellsnk@{x}{k}}}
\Jacobiamk@{x}{k} = \Asin@{\Jacobiellsnk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
JacobiAmplitude[x, Power[k, 2]] == ArcSin[JacobiSN[x, (k)^2]]
Missing Macro Error Failure -
Failed [1 / 3]
Result: 6.283185307179586
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}

22.16.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{x+2K}{k} = \Jacobiamk@{x}{k}+\pi}
\Jacobiamk@{x+2K}{k} = \Jacobiamk@{x}{k}+\pi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiAM(x + 2*EllipticK(k), k) = JacobiAM(x, k)+ Pi
JacobiAmplitude[x + 2*EllipticK[(k)^2], Power[k, 2]] == JacobiAmplitude[x, Power[k, 2]]+ Pi
Failure Failure Error
Failed [1 / 3]
Result: Plus[-4.273320998840302, Gudermannian[DirectedInfinity[]]]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]]}

22.16.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{x}{k} = \int_{0}^{x}\Jacobielldnk@{t}{k}\diff{t}}
\Jacobiamk@{x}{k} = \int_{0}^{x}\Jacobielldnk@{t}{k}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiAM(x, k) = int(JacobiDN(t, k), t = 0..x)
JacobiAmplitude[x, Power[k, 2]] == Integrate[JacobiDN[t, (k)^2], {t, 0, x}, GenerateConditions->None]
Failure Successful Successful [Tested: 9] Successful [Tested: 9]
22.16.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{x}{0} = x}
\Jacobiamk@{x}{0} = x
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiAM(x, 0) = x
JacobiAmplitude[x, Power[0, 2]] == x
Successful Successful - Successful [Tested: 3]
22.16.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{x}{1} = \Gudermannian@{x}}
\Jacobiamk@{x}{1} = \Gudermannian@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\infty < x, x < \infty}
JacobiAM(x, 1) = arctan(sinh(x))
JacobiAmplitude[x, Power[1, 2]] == Gudermannian[x]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
22.16.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{x}{k} = \frac{\pi}{2K}x+2\sum_{n=1}^{\infty}\frac{q^{n}\sin@{2n\zeta}}{n(1+q^{2n})}}
\Jacobiamk@{x}{k} = \frac{\pi}{2K}x+2\sum_{n=1}^{\infty}\frac{q^{n}\sin@{2n\zeta}}{n(1+q^{2n})}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiAM(x, k) = (Pi)/(2*EllipticK(k))*x + 2*sum(((exp(- Pi*EllipticCK(k)/EllipticK(k)))^(n)* sin(2*n*zeta))/(n*(1 +(exp(- Pi*EllipticCK(k)/EllipticK(k)))^(2*n))), n = 1..infinity)
JacobiAmplitude[x, Power[k, 2]] == Divide[Pi,2*EllipticK[(k)^2]]*x + 2*Sum[Divide[(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(n)* Sin[2*n*\[Zeta]],n*(1 +(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^(2*n))], {n, 1, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Plus[Complex[1.9977537490349477, 0.49999999999999994], Times[-1.0, Gudermannian[DirectedInfinity[]]]]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6288351638274511, -0.8359897636003678]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.16.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x = \incellintFk@{\phi}{k}}
x = \incellintFk@{\phi}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
x = EllipticF(sin(phi), k)
x == EllipticF[\[Phi], (k)^2]
Failure Failure
Failed [90 / 90]
Result: .6791299710-.6773780507*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}

Result: 1.016811658-.7182528229*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[0.6791299712710547, -0.6773780505641274]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0168116579433883, -0.7182528227883367]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.16.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiamk@{x}{k} = \phi}
\Jacobiamk@{x}{k} = \phi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiAM(x, k) = phi
JacobiAmplitude[x, Power[k, 2]] == \[Phi]
Failure Failure
Failed [90 / 90]
Result: .2657029410-.5000000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}

Result: -.6844899651-.5000000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.26570294146607043, -0.49999999999999994]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6844899649247672, -0.49999999999999994]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.16.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiellsnk@{x}{k} = \sin@@{\phi}}
\Jacobiellsnk@{x}{k} = \sin@@{\phi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiSN(x, k) = sin(phi)
JacobiSN[x, (k)^2] == Sin[\[Phi]]
Failure Failure
Failed [90 / 90]
Result: .461679191e-1-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}

Result: -.6784403409-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[0.046167919344728525, -0.33759646322287]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.678440340667692, -0.33759646322287]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.16.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{\phi} = \sin@{\Jacobiamk@{x}{k}}}
\sin@@{\phi} = \sin@{\Jacobiamk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sin(phi) = sin(JacobiAM(x, k))
Sin[\[Phi]] == Sin[JacobiAmplitude[x, Power[k, 2]]]
Failure Failure
Failed [90 / 90]
Result: -.461679191e-1+.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}

Result: .6784403409+.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.046167919344728525, 0.33759646322287]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.678440340667692, 0.33759646322287]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.16.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiellcnk@{x}{k} = \cos@@{\phi}}
\Jacobiellcnk@{x}{k} = \cos@@{\phi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiCN(x, k) = cos(phi)
JacobiCN[x, (k)^2] == Cos[\[Phi]]
Failure Failure
Failed [90 / 90]
Result: -.3054469840+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}

Result: .2530246253+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[-0.3054469841149447, 0.3969495502290325]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.2530246251336542, 0.3969495502290325]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.16.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{\phi} = \cos@{\Jacobiamk@{x}{k}}}
\cos@@{\phi} = \cos@{\Jacobiamk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
cos(phi) = cos(JacobiAM(x, k))
Cos[\[Phi]] == Cos[JacobiAmplitude[x, Power[k, 2]]]
Failure Failure
Failed [90 / 90]
Result: .3054469840-.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 1}

Result: -.2530246253-.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, k = 2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.3054469841149447, -0.3969495502290325]
Test Values: {Rule[k, 1], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.2530246251336542, -0.3969495502290325]
Test Values: {Rule[k, 2], Rule[x, Rational[3, 2]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.16.E33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \JacobiZetak@{x+K}{k} = \JacobiZetak@{x}{k}-k^{2}\Jacobiellsnk@{x}{k}\Jacobiellcdk@{x}{k}}
\JacobiZetak@{x+K}{k} = \JacobiZetak@{x}{k}-k^{2}\Jacobiellsnk@{x}{k}\Jacobiellcdk@{x}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiZeta(x + EllipticK(k), k) = JacobiZeta(x, k)- (k)^(2)* JacobiSN(x, k)*JacobiCD(x, k)
JacobiZeta[x + EllipticK[(k)^2], k] == JacobiZeta[x, k]- (k)^(2)* JacobiSN[x, (k)^2]*JacobiCD[x, (k)^2]
Failure Failure Error
Failed [9 / 9]
Result: Plus[-0.09234673295918805, JacobiZeta[DirectedInfinity[], 1.0]]
Test Values: {Rule[k, 1], Rule[x, 1.5]}

Result: Complex[-2.7319699839312124, -0.6260098794347219]
Test Values: {Rule[k, 2], Rule[x, 1.5]}

... skip entries to safe data
22.16.E34 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \JacobiZetak@{x+2K}{k} = \JacobiZetak@{x}{k}}
\JacobiZetak@{x+2K}{k} = \JacobiZetak@{x}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
JacobiZeta(x + 2*EllipticK(k), k) = JacobiZeta(x, k)
JacobiZeta[x + 2*EllipticK[(k)^2], k] == JacobiZeta[x, k]
Successful Failure -
Failed [9 / 9]
Result: Plus[-0.9974949866040544, JacobiZeta[DirectedInfinity[], 1.0]]
Test Values: {Rule[k, 1], Rule[x, 1.5]}

Result: Complex[-0.2870190432201134, -5.437509139287473]
Test Values: {Rule[k, 2], Rule[x, 1.5]}

... skip entries to safe data