22.13: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/22.13.E1 22.13.E1] || [[Item:Q7052|<math>\left(\deriv{}{z}\Jacobiellsnk@{z}{k}\right)^{2} = \left(1-\Jacobiellsnk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellsnk^{2}@{z}{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellsnk@{z}{k}\right)^{2} = \left(1-\Jacobiellsnk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellsnk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiSN(z, k), z))^(2) = (1 - (JacobiSN(z, k))^(2))*(1 - (k)^(2)* (JacobiSN(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiSN[z, (k)^2], z])^(2) == (1 - (JacobiSN[z, (k)^2])^(2))*(1 - (k)^(2)* (JacobiSN[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E1 22.13.E1] || <math qid="Q7052">\left(\deriv{}{z}\Jacobiellsnk@{z}{k}\right)^{2} = \left(1-\Jacobiellsnk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellsnk^{2}@{z}{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellsnk@{z}{k}\right)^{2} = \left(1-\Jacobiellsnk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellsnk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiSN(z, k), z))^(2) = (1 - (JacobiSN(z, k))^(2))*(1 - (k)^(2)* (JacobiSN(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiSN[z, (k)^2], z])^(2) == (1 - (JacobiSN[z, (k)^2])^(2))*(1 - (k)^(2)* (JacobiSN[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E2 22.13.E2] || [[Item:Q7053|<math>\left(\deriv{}{z}\Jacobiellcnk@{z}{k}\right)^{2} = {\left(1-\Jacobiellcnk^{2}@{z}{k}\right)}{\left({k^{\prime}}^{2}+k^{2}\Jacobiellcnk^{2}@{z}{k}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellcnk@{z}{k}\right)^{2} = {\left(1-\Jacobiellcnk^{2}@{z}{k}\right)}{\left({k^{\prime}}^{2}+k^{2}\Jacobiellcnk^{2}@{z}{k}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiCN(z, k), z))^(2) = (1 - (JacobiCN(z, k))^(2))*(1 - (k)^(2)+ (k)^(2)* (JacobiCN(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiCN[z, (k)^2], z])^(2) == (1 - (JacobiCN[z, (k)^2])^(2))*(1 - (k)^(2)+ (k)^(2)* (JacobiCN[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E2 22.13.E2] || <math qid="Q7053">\left(\deriv{}{z}\Jacobiellcnk@{z}{k}\right)^{2} = {\left(1-\Jacobiellcnk^{2}@{z}{k}\right)}{\left({k^{\prime}}^{2}+k^{2}\Jacobiellcnk^{2}@{z}{k}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellcnk@{z}{k}\right)^{2} = {\left(1-\Jacobiellcnk^{2}@{z}{k}\right)}{\left({k^{\prime}}^{2}+k^{2}\Jacobiellcnk^{2}@{z}{k}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiCN(z, k), z))^(2) = (1 - (JacobiCN(z, k))^(2))*(1 - (k)^(2)+ (k)^(2)* (JacobiCN(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiCN[z, (k)^2], z])^(2) == (1 - (JacobiCN[z, (k)^2])^(2))*(1 - (k)^(2)+ (k)^(2)* (JacobiCN[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E3 22.13.E3] || [[Item:Q7054|<math>\left(\deriv{}{z}\Jacobielldnk@{z}{k}\right)^{2} = \left(1-\Jacobielldnk^{2}@{z}{k}\right)\left(\Jacobielldnk^{2}@{z}{k}-{k^{\prime}}^{2}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobielldnk@{z}{k}\right)^{2} = \left(1-\Jacobielldnk^{2}@{z}{k}\right)\left(\Jacobielldnk^{2}@{z}{k}-{k^{\prime}}^{2}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiDN(z, k), z))^(2) = (1 - (JacobiDN(z, k))^(2))*((JacobiDN(z, k))^(2)-1 - (k)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiDN[z, (k)^2], z])^(2) == (1 - (JacobiDN[z, (k)^2])^(2))*((JacobiDN[z, (k)^2])^(2)-1 - (k)^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.137161176+.7719908960*I
| [https://dlmf.nist.gov/22.13.E3 22.13.E3] || <math qid="Q7054">\left(\deriv{}{z}\Jacobielldnk@{z}{k}\right)^{2} = \left(1-\Jacobielldnk^{2}@{z}{k}\right)\left(\Jacobielldnk^{2}@{z}{k}-{k^{\prime}}^{2}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobielldnk@{z}{k}\right)^{2} = \left(1-\Jacobielldnk^{2}@{z}{k}\right)\left(\Jacobielldnk^{2}@{z}{k}-{k^{\prime}}^{2}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiDN(z, k), z))^(2) = (1 - (JacobiDN(z, k))^(2))*((JacobiDN(z, k))^(2)-1 - (k)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiDN[z, (k)^2], z])^(2) == (1 - (JacobiDN[z, (k)^2])^(2))*((JacobiDN[z, (k)^2])^(2)-1 - (k)^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.137161176+.7719908960*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 14.77981366-.6810923425*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 14.77981366-.6810923425*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1371611759337996, 0.7719908961474706]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1371611759337996, 0.7719908961474706]
Line 24: Line 24:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E4 22.13.E4] || [[Item:Q7055|<math>\left(\deriv{}{z}\Jacobiellcdk@{z}{k}\right)^{2} = \left(1-\Jacobiellcdk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellcdk^{2}@{z}{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellcdk@{z}{k}\right)^{2} = \left(1-\Jacobiellcdk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellcdk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiCD(z, k), z))^(2) = (1 - (JacobiCD(z, k))^(2))*(1 - (k)^(2)* (JacobiCD(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiCD[z, (k)^2], z])^(2) == (1 - (JacobiCD[z, (k)^2])^(2))*(1 - (k)^(2)* (JacobiCD[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E4 22.13.E4] || <math qid="Q7055">\left(\deriv{}{z}\Jacobiellcdk@{z}{k}\right)^{2} = \left(1-\Jacobiellcdk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellcdk^{2}@{z}{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellcdk@{z}{k}\right)^{2} = \left(1-\Jacobiellcdk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellcdk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiCD(z, k), z))^(2) = (1 - (JacobiCD(z, k))^(2))*(1 - (k)^(2)* (JacobiCD(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiCD[z, (k)^2], z])^(2) == (1 - (JacobiCD[z, (k)^2])^(2))*(1 - (k)^(2)* (JacobiCD[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E5 22.13.E5] || [[Item:Q7056|<math>\left(\deriv{}{z}\Jacobiellsdk@{z}{k}\right)^{2} = {\left(1-{k^{\prime}}^{2}\Jacobiellsdk^{2}@{z}{k}\right)}{\left(1+k^{2}\Jacobiellsdk^{2}@{z}{k}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellsdk@{z}{k}\right)^{2} = {\left(1-{k^{\prime}}^{2}\Jacobiellsdk^{2}@{z}{k}\right)}{\left(1+k^{2}\Jacobiellsdk^{2}@{z}{k}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiSD(z, k), z))^(2) = (1 -1 - (k)^(2)*(JacobiSD(z, k))^(2))*(1 + (k)^(2)* (JacobiSD(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiSD[z, (k)^2], z])^(2) == (1 -1 - (k)^(2)*(JacobiSD[z, (k)^2])^(2))*(1 + (k)^(2)* (JacobiSD[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3306277626+2.965675443*I
| [https://dlmf.nist.gov/22.13.E5 22.13.E5] || <math qid="Q7056">\left(\deriv{}{z}\Jacobiellsdk@{z}{k}\right)^{2} = {\left(1-{k^{\prime}}^{2}\Jacobiellsdk^{2}@{z}{k}\right)}{\left(1+k^{2}\Jacobiellsdk^{2}@{z}{k}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellsdk@{z}{k}\right)^{2} = {\left(1-{k^{\prime}}^{2}\Jacobiellsdk^{2}@{z}{k}\right)}{\left(1+k^{2}\Jacobiellsdk^{2}@{z}{k}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiSD(z, k), z))^(2) = (1 -1 - (k)^(2)*(JacobiSD(z, k))^(2))*(1 + (k)^(2)* (JacobiSD(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiSD[z, (k)^2], z])^(2) == (1 -1 - (k)^(2)*(JacobiSD[z, (k)^2])^(2))*(1 + (k)^(2)* (JacobiSD[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3306277626+2.965675443*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.240181814+.5678364413*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.240181814+.5678364413*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.33062776288262774, 2.9656754410633357]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.33062776288262774, 2.9656754410633357]
Line 32: Line 32:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E6 22.13.E6] || [[Item:Q7057|<math>\left(\deriv{}{z}\Jacobiellndk@{z}{k}\right)^{2} = \left(\Jacobiellndk^{2}@{z}{k}-1\right)\left(1-{k^{\prime}}^{2}\Jacobiellndk^{2}@{z}{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellndk@{z}{k}\right)^{2} = \left(\Jacobiellndk^{2}@{z}{k}-1\right)\left(1-{k^{\prime}}^{2}\Jacobiellndk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiND(z, k), z))^(2) = ((JacobiND(z, k))^(2)- 1)*(1 -1 - (k)^(2)*(JacobiND(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiND[z, (k)^2], z])^(2) == ((JacobiND[z, (k)^2])^(2)- 1)*(1 -1 - (k)^(2)*(JacobiND[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6693722376+2.965675443*I
| [https://dlmf.nist.gov/22.13.E6 22.13.E6] || <math qid="Q7057">\left(\deriv{}{z}\Jacobiellndk@{z}{k}\right)^{2} = \left(\Jacobiellndk^{2}@{z}{k}-1\right)\left(1-{k^{\prime}}^{2}\Jacobiellndk^{2}@{z}{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellndk@{z}{k}\right)^{2} = \left(\Jacobiellndk^{2}@{z}{k}-1\right)\left(1-{k^{\prime}}^{2}\Jacobiellndk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiND(z, k), z))^(2) = ((JacobiND(z, k))^(2)- 1)*(1 -1 - (k)^(2)*(JacobiND(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiND[z, (k)^2], z])^(2) == ((JacobiND[z, (k)^2])^(2)- 1)*(1 -1 - (k)^(2)*(JacobiND[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6693722376+2.965675443*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 15.46527968+2.623409101*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 15.46527968+2.623409101*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6693722371173725, 2.965675441063337]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6693722371173725, 2.965675441063337]
Line 38: Line 38:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E7 22.13.E7] || [[Item:Q7058|<math>\left(\deriv{}{z}\Jacobielldck@{z}{k}\right)^{2} = \left(\Jacobielldck^{2}@{z}{k}-1\right)\left(\Jacobielldck^{2}@{z}{k}-k^{2}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobielldck@{z}{k}\right)^{2} = \left(\Jacobielldck^{2}@{z}{k}-1\right)\left(\Jacobielldck^{2}@{z}{k}-k^{2}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiDC(z, k), z))^(2) = ((JacobiDC(z, k))^(2)- 1)*((JacobiDC(z, k))^(2)- (k)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiDC[z, (k)^2], z])^(2) == ((JacobiDC[z, (k)^2])^(2)- 1)*((JacobiDC[z, (k)^2])^(2)- (k)^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E7 22.13.E7] || <math qid="Q7058">\left(\deriv{}{z}\Jacobielldck@{z}{k}\right)^{2} = \left(\Jacobielldck^{2}@{z}{k}-1\right)\left(\Jacobielldck^{2}@{z}{k}-k^{2}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobielldck@{z}{k}\right)^{2} = \left(\Jacobielldck^{2}@{z}{k}-1\right)\left(\Jacobielldck^{2}@{z}{k}-k^{2}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiDC(z, k), z))^(2) = ((JacobiDC(z, k))^(2)- 1)*((JacobiDC(z, k))^(2)- (k)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiDC[z, (k)^2], z])^(2) == ((JacobiDC[z, (k)^2])^(2)- 1)*((JacobiDC[z, (k)^2])^(2)- (k)^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E8 22.13.E8] || [[Item:Q7059|<math>\left(\deriv{}{z}\Jacobiellnck@{z}{k}\right)^{2} = {\left(k^{2}+{k^{\prime}}^{2}\Jacobiellnck^{2}@{z}{k}\right)}{\left(\Jacobiellnck^{2}@{z}{k}-1\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellnck@{z}{k}\right)^{2} = {\left(k^{2}+{k^{\prime}}^{2}\Jacobiellnck^{2}@{z}{k}\right)}{\left(\Jacobiellnck^{2}@{z}{k}-1\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiNC(z, k), z))^(2) = ((k)^(2)+1 - (k)^(2)*(JacobiNC(z, k))^(2))*((JacobiNC(z, k))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiNC[z, (k)^2], z])^(2) == ((k)^(2)+1 - (k)^(2)*(JacobiNC[z, (k)^2])^(2))*((JacobiNC[z, (k)^2])^(2)- 1)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.244125150+.6620171546*I
| [https://dlmf.nist.gov/22.13.E8 22.13.E8] || <math qid="Q7059">\left(\deriv{}{z}\Jacobiellnck@{z}{k}\right)^{2} = {\left(k^{2}+{k^{\prime}}^{2}\Jacobiellnck^{2}@{z}{k}\right)}{\left(\Jacobiellnck^{2}@{z}{k}-1\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellnck@{z}{k}\right)^{2} = {\left(k^{2}+{k^{\prime}}^{2}\Jacobiellnck^{2}@{z}{k}\right)}{\left(\Jacobiellnck^{2}@{z}{k}-1\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiNC(z, k), z))^(2) = ((k)^(2)+1 - (k)^(2)*(JacobiNC(z, k))^(2))*((JacobiNC(z, k))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiNC[z, (k)^2], z])^(2) == ((k)^(2)+1 - (k)^(2)*(JacobiNC[z, (k)^2])^(2))*((JacobiNC[z, (k)^2])^(2)- 1)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.244125150+.6620171546*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .726292651-.1255426739*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .726292651-.1255426739*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.2441251486756877, 0.66201715389323]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.2441251486756877, 0.66201715389323]
Line 46: Line 46:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E9 22.13.E9] || [[Item:Q7060|<math>\left(\deriv{}{z}\Jacobiellsck@{z}{k}\right)^{2} = \left(1+\Jacobiellsck^{2}@{z}{k}\right)\left(1+{k^{\prime}}^{2}\Jacobiellsck^{2}@{z}{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellsck@{z}{k}\right)^{2} = \left(1+\Jacobiellsck^{2}@{z}{k}\right)\left(1+{k^{\prime}}^{2}\Jacobiellsck^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiSC(z, k), z))^(2) = (1 + (JacobiSC(z, k))^(2))*(1 +1 - (k)^(2)*(JacobiSC(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiSC[z, (k)^2], z])^(2) == (1 + (JacobiSC[z, (k)^2])^(2))*(1 +1 - (k)^(2)*(JacobiSC[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.244125150+.6620171546*I
| [https://dlmf.nist.gov/22.13.E9 22.13.E9] || <math qid="Q7060">\left(\deriv{}{z}\Jacobiellsck@{z}{k}\right)^{2} = \left(1+\Jacobiellsck^{2}@{z}{k}\right)\left(1+{k^{\prime}}^{2}\Jacobiellsck^{2}@{z}{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellsck@{z}{k}\right)^{2} = \left(1+\Jacobiellsck^{2}@{z}{k}\right)\left(1+{k^{\prime}}^{2}\Jacobiellsck^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiSC(z, k), z))^(2) = (1 + (JacobiSC(z, k))^(2))*(1 +1 - (k)^(2)*(JacobiSC(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiSC[z, (k)^2], z])^(2) == (1 + (JacobiSC[z, (k)^2])^(2))*(1 +1 - (k)^(2)*(JacobiSC[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.244125150+.6620171546*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.273707349-.1255426740*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.273707349-.1255426740*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.244125148675687, 0.6620171538932291]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.244125148675687, 0.6620171538932291]
Line 52: Line 52:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E10 22.13.E10] || [[Item:Q7061|<math>\left(\deriv{}{z}\Jacobiellnsk@{z}{k}\right)^{2} = \left(\Jacobiellnsk^{2}@{z}{k}-k^{2}\right)\left(\Jacobiellnsk^{2}@{z}{k}-1\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellnsk@{z}{k}\right)^{2} = \left(\Jacobiellnsk^{2}@{z}{k}-k^{2}\right)\left(\Jacobiellnsk^{2}@{z}{k}-1\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiNS(z, k), z))^(2) = ((JacobiNS(z, k))^(2)- (k)^(2))*((JacobiNS(z, k))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiNS[z, (k)^2], z])^(2) == ((JacobiNS[z, (k)^2])^(2)- (k)^(2))*((JacobiNS[z, (k)^2])^(2)- 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E10 22.13.E10] || <math qid="Q7061">\left(\deriv{}{z}\Jacobiellnsk@{z}{k}\right)^{2} = \left(\Jacobiellnsk^{2}@{z}{k}-k^{2}\right)\left(\Jacobiellnsk^{2}@{z}{k}-1\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellnsk@{z}{k}\right)^{2} = \left(\Jacobiellnsk^{2}@{z}{k}-k^{2}\right)\left(\Jacobiellnsk^{2}@{z}{k}-1\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiNS(z, k), z))^(2) = ((JacobiNS(z, k))^(2)- (k)^(2))*((JacobiNS(z, k))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiNS[z, (k)^2], z])^(2) == ((JacobiNS[z, (k)^2])^(2)- (k)^(2))*((JacobiNS[z, (k)^2])^(2)- 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E11 22.13.E11] || [[Item:Q7062|<math>\left(\deriv{}{z}\Jacobielldsk@{z}{k}\right)^{2} = \left(\Jacobielldsk^{2}@{z}{k}-{k^{\prime}}^{2}\right)\left(k^{2}+\Jacobielldsk^{2}@{z}{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobielldsk@{z}{k}\right)^{2} = \left(\Jacobielldsk^{2}@{z}{k}-{k^{\prime}}^{2}\right)\left(k^{2}+\Jacobielldsk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiDS(z, k), z))^(2) = ((JacobiDS(z, k))^(2)-1 - (k)^(2))*((k)^(2)+ (JacobiDS(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiDS[z, (k)^2], z])^(2) == ((JacobiDS[z, (k)^2])^(2)-1 - (k)^(2))*((k)^(2)+ (JacobiDS[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.407829919-1.634616811*I
| [https://dlmf.nist.gov/22.13.E11 22.13.E11] || <math qid="Q7062">\left(\deriv{}{z}\Jacobielldsk@{z}{k}\right)^{2} = \left(\Jacobielldsk^{2}@{z}{k}-{k^{\prime}}^{2}\right)\left(k^{2}+\Jacobielldsk^{2}@{z}{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobielldsk@{z}{k}\right)^{2} = \left(\Jacobielldsk^{2}@{z}{k}-{k^{\prime}}^{2}\right)\left(k^{2}+\Jacobielldsk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiDS(z, k), z))^(2) = ((JacobiDS(z, k))^(2)-1 - (k)^(2))*((k)^(2)+ (JacobiDS(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiDS[z, (k)^2], z])^(2) == ((JacobiDS[z, (k)^2])^(2)-1 - (k)^(2))*((k)^(2)+ (JacobiDS[z, (k)^2])^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.407829919-1.634616811*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 17.28421715+.7965017848*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 17.28421715+.7965017848*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.4078299188565357, -1.6346168126100018]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.4078299188565357, -1.6346168126100018]
Line 60: Line 60:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E12 22.13.E12] || [[Item:Q7063|<math>\left(\deriv{}{z}\Jacobiellcsk@{z}{k}\right)^{2} = \left(1+\Jacobiellcsk^{2}@{z}{k}\right)\left({k^{\prime}}^{2}+\Jacobiellcsk^{2}@{z}{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellcsk@{z}{k}\right)^{2} = \left(1+\Jacobiellcsk^{2}@{z}{k}\right)\left({k^{\prime}}^{2}+\Jacobiellcsk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiCS(z, k), z))^(2) = (1 + (JacobiCS(z, k))^(2))*(1 - (k)^(2)+ (JacobiCS(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiCS[z, (k)^2], z])^(2) == (1 + (JacobiCS[z, (k)^2])^(2))*(1 - (k)^(2)+ (JacobiCS[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E12 22.13.E12] || <math qid="Q7063">\left(\deriv{}{z}\Jacobiellcsk@{z}{k}\right)^{2} = \left(1+\Jacobiellcsk^{2}@{z}{k}\right)\left({k^{\prime}}^{2}+\Jacobiellcsk^{2}@{z}{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{}{z}\Jacobiellcsk@{z}{k}\right)^{2} = \left(1+\Jacobiellcsk^{2}@{z}{k}\right)\left({k^{\prime}}^{2}+\Jacobiellcsk^{2}@{z}{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(JacobiCS(z, k), z))^(2) = (1 + (JacobiCS(z, k))^(2))*(1 - (k)^(2)+ (JacobiCS(z, k))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[JacobiCS[z, (k)^2], z])^(2) == (1 + (JacobiCS[z, (k)^2])^(2))*(1 - (k)^(2)+ (JacobiCS[z, (k)^2])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E13 22.13.E13] || [[Item:Q7064|<math>\deriv[2]{}{z}\Jacobiellsnk@{z}{k} = -(1+k^{2})\Jacobiellsnk@{z}{k}+2k^{2}\Jacobiellsnk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellsnk@{z}{k} = -(1+k^{2})\Jacobiellsnk@{z}{k}+2k^{2}\Jacobiellsnk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiSN(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiSN(z, k)+ 2*(k)^(2)* (JacobiSN(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiSN[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiSN[z, (k)^2]+ 2*(k)^(2)* (JacobiSN[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E13 22.13.E13] || <math qid="Q7064">\deriv[2]{}{z}\Jacobiellsnk@{z}{k} = -(1+k^{2})\Jacobiellsnk@{z}{k}+2k^{2}\Jacobiellsnk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellsnk@{z}{k} = -(1+k^{2})\Jacobiellsnk@{z}{k}+2k^{2}\Jacobiellsnk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiSN(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiSN(z, k)+ 2*(k)^(2)* (JacobiSN(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiSN[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiSN[z, (k)^2]+ 2*(k)^(2)* (JacobiSN[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E14 22.13.E14] || [[Item:Q7065|<math>\deriv[2]{}{z}\Jacobiellcnk@{z}{k} = -({k^{\prime}}^{2}-k^{2})\Jacobiellcnk@{z}{k}-2k^{2}\Jacobiellcnk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellcnk@{z}{k} = -({k^{\prime}}^{2}-k^{2})\Jacobiellcnk@{z}{k}-2k^{2}\Jacobiellcnk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiCN(z, k), [z$(2)]) = -(1 - (k)^(2)- (k)^(2))*JacobiCN(z, k)- 2*(k)^(2)* (JacobiCN(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiCN[z, (k)^2], {z, 2}] == -(1 - (k)^(2)- (k)^(2))*JacobiCN[z, (k)^2]- 2*(k)^(2)* (JacobiCN[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E14 22.13.E14] || <math qid="Q7065">\deriv[2]{}{z}\Jacobiellcnk@{z}{k} = -({k^{\prime}}^{2}-k^{2})\Jacobiellcnk@{z}{k}-2k^{2}\Jacobiellcnk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellcnk@{z}{k} = -({k^{\prime}}^{2}-k^{2})\Jacobiellcnk@{z}{k}-2k^{2}\Jacobiellcnk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiCN(z, k), [z$(2)]) = -(1 - (k)^(2)- (k)^(2))*JacobiCN(z, k)- 2*(k)^(2)* (JacobiCN(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiCN[z, (k)^2], {z, 2}] == -(1 - (k)^(2)- (k)^(2))*JacobiCN[z, (k)^2]- 2*(k)^(2)* (JacobiCN[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E15 22.13.E15] || [[Item:Q7066|<math>\deriv[2]{}{z}\Jacobielldnk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobielldnk@{z}{k}-2\Jacobielldnk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobielldnk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobielldnk@{z}{k}-2\Jacobielldnk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiDN(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiDN(z, k)- 2*(JacobiDN(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiDN[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiDN[z, (k)^2]- 2*(JacobiDN[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E15 22.13.E15] || <math qid="Q7066">\deriv[2]{}{z}\Jacobielldnk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobielldnk@{z}{k}-2\Jacobielldnk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobielldnk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobielldnk@{z}{k}-2\Jacobielldnk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiDN(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiDN(z, k)- 2*(JacobiDN(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiDN[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiDN[z, (k)^2]- 2*(JacobiDN[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E16 22.13.E16] || [[Item:Q7067|<math>\deriv[2]{}{z}\Jacobiellcdk@{z}{k} = -(1+k^{2})\Jacobiellcdk@{z}{k}+2k^{2}\Jacobiellcdk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellcdk@{z}{k} = -(1+k^{2})\Jacobiellcdk@{z}{k}+2k^{2}\Jacobiellcdk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiCD(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiCD(z, k)+ 2*(k)^(2)* (JacobiCD(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiCD[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiCD[z, (k)^2]+ 2*(k)^(2)* (JacobiCD[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E16 22.13.E16] || <math qid="Q7067">\deriv[2]{}{z}\Jacobiellcdk@{z}{k} = -(1+k^{2})\Jacobiellcdk@{z}{k}+2k^{2}\Jacobiellcdk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellcdk@{z}{k} = -(1+k^{2})\Jacobiellcdk@{z}{k}+2k^{2}\Jacobiellcdk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiCD(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiCD(z, k)+ 2*(k)^(2)* (JacobiCD(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiCD[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiCD[z, (k)^2]+ 2*(k)^(2)* (JacobiCD[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E17 22.13.E17] || [[Item:Q7068|<math>\deriv[2]{}{z}\Jacobiellsdk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellsdk@{z}{k}-2k^{2}{k^{\prime}}^{2}\Jacobiellsdk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellsdk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellsdk@{z}{k}-2k^{2}{k^{\prime}}^{2}\Jacobiellsdk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiSD(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiSD(z, k)- 2*(k)^(2)*1 - (k)^(2)*(JacobiSD(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiSD[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiSD[z, (k)^2]- 2*(k)^(2)*1 - (k)^(2)*(JacobiSD[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.191457484+2.523217914*I
| [https://dlmf.nist.gov/22.13.E17 22.13.E17] || <math qid="Q7068">\deriv[2]{}{z}\Jacobiellsdk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellsdk@{z}{k}-2k^{2}{k^{\prime}}^{2}\Jacobiellsdk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellsdk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellsdk@{z}{k}-2k^{2}{k^{\prime}}^{2}\Jacobiellsdk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiSD(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiSD(z, k)- 2*(k)^(2)*1 - (k)^(2)*(JacobiSD(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiSD[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiSD[z, (k)^2]- 2*(k)^(2)*1 - (k)^(2)*(JacobiSD[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.191457484+2.523217914*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 8.747979617-5.269762671*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 8.747979617-5.269762671*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.1914574835245033, 2.523217912470552]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.1914574835245033, 2.523217912470552]
Line 76: Line 76:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E18 22.13.E18] || [[Item:Q7069|<math>\deriv[2]{}{z}\Jacobiellndk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellndk@{z}{k}-2{k^{\prime}}^{2}\Jacobiellndk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellndk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellndk@{z}{k}-2{k^{\prime}}^{2}\Jacobiellndk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiND(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiND(z, k)- 2*1 - (k)^(2)*(JacobiND(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiND[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiND[z, (k)^2]- 2*1 - (k)^(2)*(JacobiND[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.040301731+2.018052700*I
| [https://dlmf.nist.gov/22.13.E18 22.13.E18] || <math qid="Q7069">\deriv[2]{}{z}\Jacobiellndk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellndk@{z}{k}-2{k^{\prime}}^{2}\Jacobiellndk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellndk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellndk@{z}{k}-2{k^{\prime}}^{2}\Jacobiellndk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiND(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiND(z, k)- 2*1 - (k)^(2)*(JacobiND(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiND[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiND[z, (k)^2]- 2*1 - (k)^(2)*(JacobiND[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.040301731+2.018052700*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.903394000-12.57828103*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.903394000-12.57828103*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.0403017307041966, 2.01805269920667]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.0403017307041966, 2.01805269920667]
Line 82: Line 82:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E19 22.13.E19] || [[Item:Q7070|<math>\deriv[2]{}{z}\Jacobielldck@{z}{k} = -(1+k^{2})\Jacobielldck@{z}{k}+2\Jacobielldck^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobielldck@{z}{k} = -(1+k^{2})\Jacobielldck@{z}{k}+2\Jacobielldck^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiDC(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiDC(z, k)+ 2*(JacobiDC(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiDC[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiDC[z, (k)^2]+ 2*(JacobiDC[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E19 22.13.E19] || <math qid="Q7070">\deriv[2]{}{z}\Jacobielldck@{z}{k} = -(1+k^{2})\Jacobielldck@{z}{k}+2\Jacobielldck^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobielldck@{z}{k} = -(1+k^{2})\Jacobielldck@{z}{k}+2\Jacobielldck^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiDC(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiDC(z, k)+ 2*(JacobiDC(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiDC[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiDC[z, (k)^2]+ 2*(JacobiDC[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E20 22.13.E20] || [[Item:Q7071|<math>\deriv[2]{}{z}\Jacobiellnck@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellnck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellnck^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellnck@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellnck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellnck^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiNC(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiNC(z, k)+ 2*1 - (k)^(2)*(JacobiNC(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiNC[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiNC[z, (k)^2]+ 2*1 - (k)^(2)*(JacobiNC[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.495832765+2.956203453*I
| [https://dlmf.nist.gov/22.13.E20 22.13.E20] || <math qid="Q7071">\deriv[2]{}{z}\Jacobiellnck@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellnck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellnck^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellnck@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellnck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellnck^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiNC(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiNC(z, k)+ 2*1 - (k)^(2)*(JacobiNC(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiNC[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiNC[z, (k)^2]+ 2*1 - (k)^(2)*(JacobiNC[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.495832765+2.956203453*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.847566639+.844372345e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.847566639+.844372345e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.4958327644324174, 2.9562034517436775]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.4958327644324174, 2.9562034517436775]
Line 90: Line 90:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E21 22.13.E21] || [[Item:Q7072|<math>\deriv[2]{}{z}\Jacobiellsck@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellsck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellsck^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellsck@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellsck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellsck^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiSC(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiSC(z, k)+ 2*1 - (k)^(2)*(JacobiSC(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiSC[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiSC[z, (k)^2]+ 2*1 - (k)^(2)*(JacobiSC[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.525815950+1.181755196*I
| [https://dlmf.nist.gov/22.13.E21 22.13.E21] || <math qid="Q7072">\deriv[2]{}{z}\Jacobiellsck@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellsck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellsck^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellsck@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellsck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellsck^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiSC(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiSC(z, k)+ 2*1 - (k)^(2)*(JacobiSC(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiSC[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiSC[z, (k)^2]+ 2*1 - (k)^(2)*(JacobiSC[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.525815950+1.181755196*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.577866152+.2036740201*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.577866152+.2036740201*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.5258159501097865, 1.1817551948561285]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.5258159501097865, 1.1817551948561285]
Line 96: Line 96:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E22 22.13.E22] || [[Item:Q7073|<math>\deriv[2]{}{z}\Jacobiellnsk@{z}{k} = -(1+k^{2})\Jacobiellnsk@{z}{k}+2\Jacobiellnsk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellnsk@{z}{k} = -(1+k^{2})\Jacobiellnsk@{z}{k}+2\Jacobiellnsk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiNS(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiNS(z, k)+ 2*(JacobiNS(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiNS[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiNS[z, (k)^2]+ 2*(JacobiNS[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E22 22.13.E22] || <math qid="Q7073">\deriv[2]{}{z}\Jacobiellnsk@{z}{k} = -(1+k^{2})\Jacobiellnsk@{z}{k}+2\Jacobiellnsk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellnsk@{z}{k} = -(1+k^{2})\Jacobiellnsk@{z}{k}+2\Jacobiellnsk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiNS(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiNS(z, k)+ 2*(JacobiNS(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiNS[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiNS[z, (k)^2]+ 2*(JacobiNS[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/22.13.E23 22.13.E23] || [[Item:Q7074|<math>\deriv[2]{}{z}\Jacobielldsk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobielldsk@{z}{k}+2\Jacobielldsk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobielldsk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobielldsk@{z}{k}+2\Jacobielldsk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiDS(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiDS(z, k)+ 2*(JacobiDS(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiDS[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiDS[z, (k)^2]+ 2*(JacobiDS[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.446566498-1.129997698*I
| [https://dlmf.nist.gov/22.13.E23 22.13.E23] || <math qid="Q7074">\deriv[2]{}{z}\Jacobielldsk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobielldsk@{z}{k}+2\Jacobielldsk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobielldsk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobielldsk@{z}{k}+2\Jacobielldsk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiDS(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiDS(z, k)+ 2*(JacobiDS(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiDS[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiDS[z, (k)^2]+ 2*(JacobiDS[z, (k)^2])^(3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.446566498-1.129997698*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2935291263-10.85414309*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2935291263-10.85414309*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.4465664983977982, -1.1299976975966786]
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.4465664983977982, -1.1299976975966786]
Line 104: Line 104:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.13.E24 22.13.E24] || [[Item:Q7075|<math>\deriv[2]{}{z}\Jacobiellcsk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellcsk@{z}{k}+2\Jacobiellcsk^{3}@{z}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellcsk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellcsk@{z}{k}+2\Jacobiellcsk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiCS(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiCS(z, k)+ 2*(JacobiCS(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiCS[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiCS[z, (k)^2]+ 2*(JacobiCS[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/22.13.E24 22.13.E24] || <math qid="Q7075">\deriv[2]{}{z}\Jacobiellcsk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellcsk@{z}{k}+2\Jacobiellcsk^{3}@{z}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{}{z}\Jacobiellcsk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellcsk@{z}{k}+2\Jacobiellcsk^{3}@{z}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(JacobiCS(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiCS(z, k)+ 2*(JacobiCS(z, k))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[JacobiCS[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiCS[z, (k)^2]+ 2*(JacobiCS[z, (k)^2])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|}
|}
</div>
</div>

Latest revision as of 11:59, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
22.13.E1 ( d d z sn ( z , k ) ) 2 = ( 1 - sn 2 ( z , k ) ) ( 1 - k 2 sn 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-sn 𝑧 𝑘 2 1 Jacobi-elliptic-sn 2 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sn 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% sn}\left(z,k\right)\right)^{2}=\left(1-{\operatorname{sn}^{2}}\left(z,k\right)% \right)\left(1-k^{2}{\operatorname{sn}^{2}}\left(z,k\right)\right)}}
\left(\deriv{}{z}\Jacobiellsnk@{z}{k}\right)^{2} = \left(1-\Jacobiellsnk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellsnk^{2}@{z}{k}\right)

(diff(JacobiSN(z, k), z))^(2) = (1 - (JacobiSN(z, k))^(2))*(1 - (k)^(2)* (JacobiSN(z, k))^(2))
(D[JacobiSN[z, (k)^2], z])^(2) == (1 - (JacobiSN[z, (k)^2])^(2))*(1 - (k)^(2)* (JacobiSN[z, (k)^2])^(2))
Successful Successful - Successful [Tested: 21]
22.13.E2 ( d d z cn ( z , k ) ) 2 = ( 1 - cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-cn 𝑧 𝑘 2 1 Jacobi-elliptic-cn 2 𝑧 𝑘 superscript superscript 𝑘 2 superscript 𝑘 2 Jacobi-elliptic-cn 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% cn}\left(z,k\right)\right)^{2}={\left(1-{\operatorname{cn}^{2}}\left(z,k\right% )\right)}{\left({k^{\prime}}^{2}+k^{2}{\operatorname{cn}^{2}}\left(z,k\right)% \right)}}}
\left(\deriv{}{z}\Jacobiellcnk@{z}{k}\right)^{2} = {\left(1-\Jacobiellcnk^{2}@{z}{k}\right)}{\left({k^{\prime}}^{2}+k^{2}\Jacobiellcnk^{2}@{z}{k}\right)}

(diff(JacobiCN(z, k), z))^(2) = (1 - (JacobiCN(z, k))^(2))*(1 - (k)^(2)+ (k)^(2)* (JacobiCN(z, k))^(2))
(D[JacobiCN[z, (k)^2], z])^(2) == (1 - (JacobiCN[z, (k)^2])^(2))*(1 - (k)^(2)+ (k)^(2)* (JacobiCN[z, (k)^2])^(2))
Successful Successful - Successful [Tested: 21]
22.13.E3 ( d d z dn ( z , k ) ) 2 = ( 1 - dn 2 ( z , k ) ) ( dn 2 ( z , k ) - k 2 ) superscript derivative 𝑧 Jacobi-elliptic-dn 𝑧 𝑘 2 1 Jacobi-elliptic-dn 2 𝑧 𝑘 Jacobi-elliptic-dn 2 𝑧 𝑘 superscript superscript 𝑘 2 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% dn}\left(z,k\right)\right)^{2}=\left(1-{\operatorname{dn}^{2}}\left(z,k\right)% \right)\left({\operatorname{dn}^{2}}\left(z,k\right)-{k^{\prime}}^{2}\right)}}
\left(\deriv{}{z}\Jacobielldnk@{z}{k}\right)^{2} = \left(1-\Jacobielldnk^{2}@{z}{k}\right)\left(\Jacobielldnk^{2}@{z}{k}-{k^{\prime}}^{2}\right)

(diff(JacobiDN(z, k), z))^(2) = (1 - (JacobiDN(z, k))^(2))*((JacobiDN(z, k))^(2)-1 - (k)^(2))
(D[JacobiDN[z, (k)^2], z])^(2) == (1 - (JacobiDN[z, (k)^2])^(2))*((JacobiDN[z, (k)^2])^(2)-1 - (k)^(2))
Failure Failure
Failed [21 / 21]
Result: 1.137161176+.7719908960*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 14.77981366-.6810923425*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[1.1371611759337996, 0.7719908961474706]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[14.779813656775712, -0.6810923360985438]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E4 ( d d z cd ( z , k ) ) 2 = ( 1 - cd 2 ( z , k ) ) ( 1 - k 2 cd 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-cd 𝑧 𝑘 2 1 Jacobi-elliptic-cd 2 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-cd 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% cd}\left(z,k\right)\right)^{2}=\left(1-{\operatorname{cd}^{2}}\left(z,k\right)% \right)\left(1-k^{2}{\operatorname{cd}^{2}}\left(z,k\right)\right)}}
\left(\deriv{}{z}\Jacobiellcdk@{z}{k}\right)^{2} = \left(1-\Jacobiellcdk^{2}@{z}{k}\right)\left(1-k^{2}\Jacobiellcdk^{2}@{z}{k}\right)

(diff(JacobiCD(z, k), z))^(2) = (1 - (JacobiCD(z, k))^(2))*(1 - (k)^(2)* (JacobiCD(z, k))^(2))
(D[JacobiCD[z, (k)^2], z])^(2) == (1 - (JacobiCD[z, (k)^2])^(2))*(1 - (k)^(2)* (JacobiCD[z, (k)^2])^(2))
Successful Successful - Successful [Tested: 21]
22.13.E5 ( d d z sd ( z , k ) ) 2 = ( 1 - k 2 sd 2 ( z , k ) ) ( 1 + k 2 sd 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-sd 𝑧 𝑘 2 1 superscript superscript 𝑘 2 Jacobi-elliptic-sd 2 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sd 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% sd}\left(z,k\right)\right)^{2}={\left(1-{k^{\prime}}^{2}{\operatorname{sd}^{2}% }\left(z,k\right)\right)}{\left(1+k^{2}{\operatorname{sd}^{2}}\left(z,k\right)% \right)}}}
\left(\deriv{}{z}\Jacobiellsdk@{z}{k}\right)^{2} = {\left(1-{k^{\prime}}^{2}\Jacobiellsdk^{2}@{z}{k}\right)}{\left(1+k^{2}\Jacobiellsdk^{2}@{z}{k}\right)}

(diff(JacobiSD(z, k), z))^(2) = (1 -1 - (k)^(2)*(JacobiSD(z, k))^(2))*(1 + (k)^(2)* (JacobiSD(z, k))^(2))
(D[JacobiSD[z, (k)^2], z])^(2) == (1 -1 - (k)^(2)*(JacobiSD[z, (k)^2])^(2))*(1 + (k)^(2)* (JacobiSD[z, (k)^2])^(2))
Failure Failure
Failed [21 / 21]
Result: .3306277626+2.965675443*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 3.240181814+.5678364413*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[0.33062776288262774, 2.9656754410633357]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.24018181473062, 0.5678364360004244]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E6 ( d d z nd ( z , k ) ) 2 = ( nd 2 ( z , k ) - 1 ) ( 1 - k 2 nd 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-nd 𝑧 𝑘 2 Jacobi-elliptic-nd 2 𝑧 𝑘 1 1 superscript superscript 𝑘 2 Jacobi-elliptic-nd 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% nd}\left(z,k\right)\right)^{2}=\left({\operatorname{nd}^{2}}\left(z,k\right)-1% \right)\left(1-{k^{\prime}}^{2}{\operatorname{nd}^{2}}\left(z,k\right)\right)}}
\left(\deriv{}{z}\Jacobiellndk@{z}{k}\right)^{2} = \left(\Jacobiellndk^{2}@{z}{k}-1\right)\left(1-{k^{\prime}}^{2}\Jacobiellndk^{2}@{z}{k}\right)

(diff(JacobiND(z, k), z))^(2) = ((JacobiND(z, k))^(2)- 1)*(1 -1 - (k)^(2)*(JacobiND(z, k))^(2))
(D[JacobiND[z, (k)^2], z])^(2) == ((JacobiND[z, (k)^2])^(2)- 1)*(1 -1 - (k)^(2)*(JacobiND[z, (k)^2])^(2))
Failure Failure
Failed [21 / 21]
Result: -.6693722376+2.965675443*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 15.46527968+2.623409101*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[-0.6693722371173725, 2.965675441063337]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[15.465279679493392, 2.6234090772942062]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) - 1 ) ( dc 2 ( z , k ) - k 2 ) superscript derivative 𝑧 Jacobi-elliptic-dc 𝑧 𝑘 2 Jacobi-elliptic-dc 2 𝑧 𝑘 1 Jacobi-elliptic-dc 2 𝑧 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% dc}\left(z,k\right)\right)^{2}=\left({\operatorname{dc}^{2}}\left(z,k\right)-1% \right)\left({\operatorname{dc}^{2}}\left(z,k\right)-k^{2}\right)}}
\left(\deriv{}{z}\Jacobielldck@{z}{k}\right)^{2} = \left(\Jacobielldck^{2}@{z}{k}-1\right)\left(\Jacobielldck^{2}@{z}{k}-k^{2}\right)

(diff(JacobiDC(z, k), z))^(2) = ((JacobiDC(z, k))^(2)- 1)*((JacobiDC(z, k))^(2)- (k)^(2))
(D[JacobiDC[z, (k)^2], z])^(2) == ((JacobiDC[z, (k)^2])^(2)- 1)*((JacobiDC[z, (k)^2])^(2)- (k)^(2))
Successful Successful - Successful [Tested: 21]
22.13.E8 ( d d z nc ( z , k ) ) 2 = ( k 2 + k 2 nc 2 ( z , k ) ) ( nc 2 ( z , k ) - 1 ) superscript derivative 𝑧 Jacobi-elliptic-nc 𝑧 𝑘 2 superscript 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-nc 2 𝑧 𝑘 Jacobi-elliptic-nc 2 𝑧 𝑘 1 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% nc}\left(z,k\right)\right)^{2}={\left(k^{2}+{k^{\prime}}^{2}{\operatorname{nc}% ^{2}}\left(z,k\right)\right)}{\left({\operatorname{nc}^{2}}\left(z,k\right)-1% \right)}}}
\left(\deriv{}{z}\Jacobiellnck@{z}{k}\right)^{2} = {\left(k^{2}+{k^{\prime}}^{2}\Jacobiellnck^{2}@{z}{k}\right)}{\left(\Jacobiellnck^{2}@{z}{k}-1\right)}

(diff(JacobiNC(z, k), z))^(2) = ((k)^(2)+1 - (k)^(2)*(JacobiNC(z, k))^(2))*((JacobiNC(z, k))^(2)- 1)
(D[JacobiNC[z, (k)^2], z])^(2) == ((k)^(2)+1 - (k)^(2)*(JacobiNC[z, (k)^2])^(2))*((JacobiNC[z, (k)^2])^(2)- 1)
Failure Failure
Failed [20 / 21]
Result: -1.244125150+.6620171546*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .726292651-.1255426739*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [20 / 21]
Result: Complex[-1.2441251486756877, 0.66201715389323]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.726292650669289, -0.12554267275387493]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E9 ( d d z sc ( z , k ) ) 2 = ( 1 + sc 2 ( z , k ) ) ( 1 + k 2 sc 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-sc 𝑧 𝑘 2 1 Jacobi-elliptic-sc 2 𝑧 𝑘 1 superscript superscript 𝑘 2 Jacobi-elliptic-sc 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% sc}\left(z,k\right)\right)^{2}=\left(1+{\operatorname{sc}^{2}}\left(z,k\right)% \right)\left(1+{k^{\prime}}^{2}{\operatorname{sc}^{2}}\left(z,k\right)\right)}}
\left(\deriv{}{z}\Jacobiellsck@{z}{k}\right)^{2} = \left(1+\Jacobiellsck^{2}@{z}{k}\right)\left(1+{k^{\prime}}^{2}\Jacobiellsck^{2}@{z}{k}\right)

(diff(JacobiSC(z, k), z))^(2) = (1 + (JacobiSC(z, k))^(2))*(1 +1 - (k)^(2)*(JacobiSC(z, k))^(2))
(D[JacobiSC[z, (k)^2], z])^(2) == (1 + (JacobiSC[z, (k)^2])^(2))*(1 +1 - (k)^(2)*(JacobiSC[z, (k)^2])^(2))
Failure Failure
Failed [21 / 21]
Result: -2.244125150+.6620171546*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.273707349-.1255426740*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[-2.244125148675687, 0.6620171538932291]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.27370734933071006, -0.12554267275387854]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E10 ( d d z ns ( z , k ) ) 2 = ( ns 2 ( z , k ) - k 2 ) ( ns 2 ( z , k ) - 1 ) superscript derivative 𝑧 Jacobi-elliptic-ns 𝑧 𝑘 2 Jacobi-elliptic-ns 2 𝑧 𝑘 superscript 𝑘 2 Jacobi-elliptic-ns 2 𝑧 𝑘 1 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% ns}\left(z,k\right)\right)^{2}=\left({\operatorname{ns}^{2}}\left(z,k\right)-k% ^{2}\right)\left({\operatorname{ns}^{2}}\left(z,k\right)-1\right)}}
\left(\deriv{}{z}\Jacobiellnsk@{z}{k}\right)^{2} = \left(\Jacobiellnsk^{2}@{z}{k}-k^{2}\right)\left(\Jacobiellnsk^{2}@{z}{k}-1\right)

(diff(JacobiNS(z, k), z))^(2) = ((JacobiNS(z, k))^(2)- (k)^(2))*((JacobiNS(z, k))^(2)- 1)
(D[JacobiNS[z, (k)^2], z])^(2) == ((JacobiNS[z, (k)^2])^(2)- (k)^(2))*((JacobiNS[z, (k)^2])^(2)- 1)
Successful Successful - Successful [Tested: 21]
22.13.E11 ( d d z ds ( z , k ) ) 2 = ( ds 2 ( z , k ) - k 2 ) ( k 2 + ds 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-ds 𝑧 𝑘 2 Jacobi-elliptic-ds 2 𝑧 𝑘 superscript superscript 𝑘 2 superscript 𝑘 2 Jacobi-elliptic-ds 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% ds}\left(z,k\right)\right)^{2}=\left({\operatorname{ds}^{2}}\left(z,k\right)-{% k^{\prime}}^{2}\right)\left(k^{2}+{\operatorname{ds}^{2}}\left(z,k\right)% \right)}}
\left(\deriv{}{z}\Jacobielldsk@{z}{k}\right)^{2} = \left(\Jacobielldsk^{2}@{z}{k}-{k^{\prime}}^{2}\right)\left(k^{2}+\Jacobielldsk^{2}@{z}{k}\right)

(diff(JacobiDS(z, k), z))^(2) = ((JacobiDS(z, k))^(2)-1 - (k)^(2))*((k)^(2)+ (JacobiDS(z, k))^(2))
(D[JacobiDS[z, (k)^2], z])^(2) == ((JacobiDS[z, (k)^2])^(2)-1 - (k)^(2))*((k)^(2)+ (JacobiDS[z, (k)^2])^(2))
Failure Failure
Failed [21 / 21]
Result: 2.407829919-1.634616811*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 17.28421715+.7965017848*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[2.4078299188565357, -1.6346168126100018]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[17.284217154319762, 0.7965017768592271]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E12 ( d d z cs ( z , k ) ) 2 = ( 1 + cs 2 ( z , k ) ) ( k 2 + cs 2 ( z , k ) ) superscript derivative 𝑧 Jacobi-elliptic-cs 𝑧 𝑘 2 1 Jacobi-elliptic-cs 2 𝑧 𝑘 superscript superscript 𝑘 2 Jacobi-elliptic-cs 2 𝑧 𝑘 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% cs}\left(z,k\right)\right)^{2}=\left(1+{\operatorname{cs}^{2}}\left(z,k\right)% \right)\left({k^{\prime}}^{2}+{\operatorname{cs}^{2}}\left(z,k\right)\right)}}
\left(\deriv{}{z}\Jacobiellcsk@{z}{k}\right)^{2} = \left(1+\Jacobiellcsk^{2}@{z}{k}\right)\left({k^{\prime}}^{2}+\Jacobiellcsk^{2}@{z}{k}\right)

(diff(JacobiCS(z, k), z))^(2) = (1 + (JacobiCS(z, k))^(2))*(1 - (k)^(2)+ (JacobiCS(z, k))^(2))
(D[JacobiCS[z, (k)^2], z])^(2) == (1 + (JacobiCS[z, (k)^2])^(2))*(1 - (k)^(2)+ (JacobiCS[z, (k)^2])^(2))
Successful Successful - Successful [Tested: 21]
22.13.E13 d 2 d z 2 sn ( z , k ) = - ( 1 + k 2 ) sn ( z , k ) + 2 k 2 sn 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-sn 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sn 𝑧 𝑘 2 superscript 𝑘 2 Jacobi-elliptic-sn 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{sn}\left(z,k\right)=-(1+k^{2})\operatorname{sn}\left(z,k\right)+% 2k^{2}{\operatorname{sn}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellsnk@{z}{k} = -(1+k^{2})\Jacobiellsnk@{z}{k}+2k^{2}\Jacobiellsnk^{3}@{z}{k}

diff(JacobiSN(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiSN(z, k)+ 2*(k)^(2)* (JacobiSN(z, k))^(3)
D[JacobiSN[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiSN[z, (k)^2]+ 2*(k)^(2)* (JacobiSN[z, (k)^2])^(3)
Successful Successful - Successful [Tested: 21]
22.13.E14 d 2 d z 2 cn ( z , k ) = - ( k 2 - k 2 ) cn ( z , k ) - 2 k 2 cn 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-cn 𝑧 𝑘 superscript superscript 𝑘 2 superscript 𝑘 2 Jacobi-elliptic-cn 𝑧 𝑘 2 superscript 𝑘 2 Jacobi-elliptic-cn 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{cn}\left(z,k\right)=-({k^{\prime}}^{2}-k^{2})\operatorname{cn}% \left(z,k\right)-2k^{2}{\operatorname{cn}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellcnk@{z}{k} = -({k^{\prime}}^{2}-k^{2})\Jacobiellcnk@{z}{k}-2k^{2}\Jacobiellcnk^{3}@{z}{k}

diff(JacobiCN(z, k), [z$(2)]) = -(1 - (k)^(2)- (k)^(2))*JacobiCN(z, k)- 2*(k)^(2)* (JacobiCN(z, k))^(3)
D[JacobiCN[z, (k)^2], {z, 2}] == -(1 - (k)^(2)- (k)^(2))*JacobiCN[z, (k)^2]- 2*(k)^(2)* (JacobiCN[z, (k)^2])^(3)
Successful Successful - Successful [Tested: 21]
22.13.E15 d 2 d z 2 dn ( z , k ) = ( 1 + k 2 ) dn ( z , k ) - 2 dn 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-dn 𝑧 𝑘 1 superscript superscript 𝑘 2 Jacobi-elliptic-dn 𝑧 𝑘 2 Jacobi-elliptic-dn 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{dn}\left(z,k\right)=(1+{k^{\prime}}^{2})\operatorname{dn}\left(z% ,k\right)-2{\operatorname{dn}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobielldnk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobielldnk@{z}{k}-2\Jacobielldnk^{3}@{z}{k}

diff(JacobiDN(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiDN(z, k)- 2*(JacobiDN(z, k))^(3)
D[JacobiDN[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiDN[z, (k)^2]- 2*(JacobiDN[z, (k)^2])^(3)
Successful Successful - Successful [Tested: 21]
22.13.E16 d 2 d z 2 cd ( z , k ) = - ( 1 + k 2 ) cd ( z , k ) + 2 k 2 cd 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-cd 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-cd 𝑧 𝑘 2 superscript 𝑘 2 Jacobi-elliptic-cd 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{cd}\left(z,k\right)=-(1+k^{2})\operatorname{cd}\left(z,k\right)+% 2k^{2}{\operatorname{cd}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellcdk@{z}{k} = -(1+k^{2})\Jacobiellcdk@{z}{k}+2k^{2}\Jacobiellcdk^{3}@{z}{k}

diff(JacobiCD(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiCD(z, k)+ 2*(k)^(2)* (JacobiCD(z, k))^(3)
D[JacobiCD[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiCD[z, (k)^2]+ 2*(k)^(2)* (JacobiCD[z, (k)^2])^(3)
Successful Successful - Successful [Tested: 21]
22.13.E17 d 2 d z 2 sd ( z , k ) = ( k 2 - k 2 ) sd ( z , k ) - 2 k 2 k 2 sd 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-sd 𝑧 𝑘 superscript 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-sd 𝑧 𝑘 2 superscript 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-sd 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{sd}\left(z,k\right)=(k^{2}-{k^{\prime}}^{2})\operatorname{sd}% \left(z,k\right)-2k^{2}{k^{\prime}}^{2}{\operatorname{sd}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellsdk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellsdk@{z}{k}-2k^{2}{k^{\prime}}^{2}\Jacobiellsdk^{3}@{z}{k}

diff(JacobiSD(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiSD(z, k)- 2*(k)^(2)*1 - (k)^(2)*(JacobiSD(z, k))^(3)
D[JacobiSD[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiSD[z, (k)^2]- 2*(k)^(2)*1 - (k)^(2)*(JacobiSD[z, (k)^2])^(3)
Failure Failure
Failed [21 / 21]
Result: 3.191457484+2.523217914*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 8.747979617-5.269762671*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[3.1914574835245033, 2.523217912470552]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[8.747979609525483, -5.269762670615425]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E18 d 2 d z 2 nd ( z , k ) = ( 1 + k 2 ) nd ( z , k ) - 2 k 2 nd 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-nd 𝑧 𝑘 1 superscript superscript 𝑘 2 Jacobi-elliptic-nd 𝑧 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-nd 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{nd}\left(z,k\right)=(1+{k^{\prime}}^{2})\operatorname{nd}\left(z% ,k\right)-2{k^{\prime}}^{2}{\operatorname{nd}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellndk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellndk@{z}{k}-2{k^{\prime}}^{2}\Jacobiellndk^{3}@{z}{k}

diff(JacobiND(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiND(z, k)- 2*1 - (k)^(2)*(JacobiND(z, k))^(3)
D[JacobiND[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiND[z, (k)^2]- 2*1 - (k)^(2)*(JacobiND[z, (k)^2])^(3)
Failure Failure
Failed [21 / 21]
Result: 3.040301731+2.018052700*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 3.903394000-12.57828103*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[3.0403017307041966, 2.01805269920667]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.903393981406644, -12.578281030301023]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E19 d 2 d z 2 dc ( z , k ) = - ( 1 + k 2 ) dc ( z , k ) + 2 dc 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-dc 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-dc 𝑧 𝑘 2 Jacobi-elliptic-dc 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{dc}\left(z,k\right)=-(1+k^{2})\operatorname{dc}\left(z,k\right)+% 2{\operatorname{dc}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobielldck@{z}{k} = -(1+k^{2})\Jacobielldck@{z}{k}+2\Jacobielldck^{3}@{z}{k}

diff(JacobiDC(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiDC(z, k)+ 2*(JacobiDC(z, k))^(3)
D[JacobiDC[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiDC[z, (k)^2]+ 2*(JacobiDC[z, (k)^2])^(3)
Successful Successful - Successful [Tested: 21]
22.13.E20 d 2 d z 2 nc ( z , k ) = ( k 2 - k 2 ) nc ( z , k ) + 2 k 2 nc 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-nc 𝑧 𝑘 superscript 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-nc 𝑧 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-nc 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{nc}\left(z,k\right)=(k^{2}-{k^{\prime}}^{2})\operatorname{nc}% \left(z,k\right)+2{k^{\prime}}^{2}{\operatorname{nc}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellnck@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobiellnck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellnck^{3}@{z}{k}

diff(JacobiNC(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiNC(z, k)+ 2*1 - (k)^(2)*(JacobiNC(z, k))^(3)
D[JacobiNC[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiNC[z, (k)^2]+ 2*1 - (k)^(2)*(JacobiNC[z, (k)^2])^(3)
Failure Failure
Failed [21 / 21]
Result: 1.495832765+2.956203453*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 3.847566639+.844372345e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[1.4958327644324174, 2.9562034517436775]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.8475666387741003, 0.08443723368166078]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E21 d 2 d z 2 sc ( z , k ) = ( 1 + k 2 ) sc ( z , k ) + 2 k 2 sc 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-sc 𝑧 𝑘 1 superscript superscript 𝑘 2 Jacobi-elliptic-sc 𝑧 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-sc 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{sc}\left(z,k\right)=(1+{k^{\prime}}^{2})\operatorname{sc}\left(z% ,k\right)+2{k^{\prime}}^{2}{\operatorname{sc}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellsck@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellsck@{z}{k}+2{k^{\prime}}^{2}\Jacobiellsck^{3}@{z}{k}

diff(JacobiSC(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiSC(z, k)+ 2*1 - (k)^(2)*(JacobiSC(z, k))^(3)
D[JacobiSC[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiSC[z, (k)^2]+ 2*1 - (k)^(2)*(JacobiSC[z, (k)^2])^(3)
Failure Failure
Failed [21 / 21]
Result: -2.525815950+1.181755196*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -3.577866152+.2036740201*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[-2.5258159501097865, 1.1817551948561285]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-3.5778661524913966, 0.20367401847233424]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E22 d 2 d z 2 ns ( z , k ) = - ( 1 + k 2 ) ns ( z , k ) + 2 ns 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-ns 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-ns 𝑧 𝑘 2 Jacobi-elliptic-ns 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{ns}\left(z,k\right)=-(1+k^{2})\operatorname{ns}\left(z,k\right)+% 2{\operatorname{ns}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellnsk@{z}{k} = -(1+k^{2})\Jacobiellnsk@{z}{k}+2\Jacobiellnsk^{3}@{z}{k}

diff(JacobiNS(z, k), [z$(2)]) = -(1 + (k)^(2))*JacobiNS(z, k)+ 2*(JacobiNS(z, k))^(3)
D[JacobiNS[z, (k)^2], {z, 2}] == -(1 + (k)^(2))*JacobiNS[z, (k)^2]+ 2*(JacobiNS[z, (k)^2])^(3)
Successful Successful - Successful [Tested: 21]
22.13.E23 d 2 d z 2 ds ( z , k ) = ( k 2 - k 2 ) ds ( z , k ) + 2 ds 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-ds 𝑧 𝑘 superscript 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-ds 𝑧 𝑘 2 Jacobi-elliptic-ds 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{ds}\left(z,k\right)=(k^{2}-{k^{\prime}}^{2})\operatorname{ds}% \left(z,k\right)+2{\operatorname{ds}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobielldsk@{z}{k} = (k^{2}-{k^{\prime}}^{2})\Jacobielldsk@{z}{k}+2\Jacobielldsk^{3}@{z}{k}

diff(JacobiDS(z, k), [z$(2)]) = ((k)^(2)-1 - (k)^(2))*JacobiDS(z, k)+ 2*(JacobiDS(z, k))^(3)
D[JacobiDS[z, (k)^2], {z, 2}] == ((k)^(2)-1 - (k)^(2))*JacobiDS[z, (k)^2]+ 2*(JacobiDS[z, (k)^2])^(3)
Failure Failure
Failed [21 / 21]
Result: 1.446566498-1.129997698*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.2935291263-10.85414309*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[1.4465664983977982, -1.1299976975966786]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.293529123621927, -10.854143085101464]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
22.13.E24 d 2 d z 2 cs ( z , k ) = ( 1 + k 2 ) cs ( z , k ) + 2 cs 3 ( z , k ) derivative 𝑧 2 Jacobi-elliptic-cs 𝑧 𝑘 1 superscript superscript 𝑘 2 Jacobi-elliptic-cs 𝑧 𝑘 2 Jacobi-elliptic-cs 3 𝑧 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}z}^{2}}% \operatorname{cs}\left(z,k\right)=(1+{k^{\prime}}^{2})\operatorname{cs}\left(z% ,k\right)+2{\operatorname{cs}^{3}}\left(z,k\right)}}
\deriv[2]{}{z}\Jacobiellcsk@{z}{k} = (1+{k^{\prime}}^{2})\Jacobiellcsk@{z}{k}+2\Jacobiellcsk^{3}@{z}{k}

diff(JacobiCS(z, k), [z$(2)]) = (1 +1 - (k)^(2))*JacobiCS(z, k)+ 2*(JacobiCS(z, k))^(3)
D[JacobiCS[z, (k)^2], {z, 2}] == (1 +1 - (k)^(2))*JacobiCS[z, (k)^2]+ 2*(JacobiCS[z, (k)^2])^(3)
Successful Successful - Successful [Tested: 21]