20.8: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/20.8.E1 20.8.E1] || [[Item:Q6830|<math>\frac{\Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{z}{q}\Jacobithetaq{4}@{z}{q}}{\Jacobithetaq{2}@{z}{q}} = 2\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{z}{q}\Jacobithetaq{4}@{z}{q}}{\Jacobithetaq{2}@{z}{q}} = 2\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(JacobiTheta2(0, q)*JacobiTheta3(z, q)*JacobiTheta4(z, q))/(JacobiTheta2(z, q)) = 2*sum(((- 1)^(n)* (q)^((n)^(2))* exp(I*2*n*z))/((q)^(- n)* exp(- I*z)+ (q)^(n)* exp(I*z)), n = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[EllipticTheta[2, 0, q]*EllipticTheta[3, z, q]*EllipticTheta[4, z, q],EllipticTheta[2, z, q]] == 2*Sum[Divide[(- 1)^(n)* (q)^((n)^(2))* Exp[I*2*n*z],(q)^(- n)* Exp[- I*z]+ (q)^(n)* Exp[I*z]], {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/20.8.E1 20.8.E1] || <math qid="Q6830">\frac{\Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{z}{q}\Jacobithetaq{4}@{z}{q}}{\Jacobithetaq{2}@{z}{q}} = 2\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{z}{q}\Jacobithetaq{4}@{z}{q}}{\Jacobithetaq{2}@{z}{q}} = 2\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(JacobiTheta2(0, q)*JacobiTheta3(z, q)*JacobiTheta4(z, q))/(JacobiTheta2(z, q)) = 2*sum(((- 1)^(n)* (q)^((n)^(2))* exp(I*2*n*z))/((q)^(- n)* exp(- I*z)+ (q)^(n)* exp(I*z)), n = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[EllipticTheta[2, 0, q]*EllipticTheta[3, z, q]*EllipticTheta[4, z, q],EllipticTheta[2, z, q]] == 2*Sum[Divide[(- 1)^(n)* (q)^((n)^(2))* Exp[I*2*n*z],(q)^(- n)* Exp[- I*z]+ (q)^(n)* Exp[I*z]], {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 11:56, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
20.8.E1 θ 2 ( 0 , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( z , q ) = 2 n = - ( - 1 ) n q n 2 e i 2 n z q - n e - i z + q n e i z Jacobi-theta 2 0 𝑞 Jacobi-theta 3 𝑧 𝑞 Jacobi-theta 4 𝑧 𝑞 Jacobi-theta 2 𝑧 𝑞 2 superscript subscript 𝑛 superscript 1 𝑛 superscript 𝑞 superscript 𝑛 2 superscript 𝑒 𝑖 2 𝑛 𝑧 superscript 𝑞 𝑛 superscript 𝑒 𝑖 𝑧 superscript 𝑞 𝑛 superscript 𝑒 𝑖 𝑧 {\displaystyle{\displaystyle\frac{\theta_{2}\left(0,q\right)\theta_{3}\left(z,% q\right)\theta_{4}\left(z,q\right)}{\theta_{2}\left(z,q\right)}=2\sum_{n=-% \infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}}}
\frac{\Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{z}{q}\Jacobithetaq{4}@{z}{q}}{\Jacobithetaq{2}@{z}{q}} = 2\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}

(JacobiTheta2(0, q)*JacobiTheta3(z, q)*JacobiTheta4(z, q))/(JacobiTheta2(z, q)) = 2*sum(((- 1)^(n)* (q)^((n)^(2))* exp(I*2*n*z))/((q)^(- n)* exp(- I*z)+ (q)^(n)* exp(I*z)), n = - infinity..infinity)
Divide[EllipticTheta[2, 0, q]*EllipticTheta[3, z, q]*EllipticTheta[4, z, q],EllipticTheta[2, z, q]] == 2*Sum[Divide[(- 1)^(n)* (q)^((n)^(2))* Exp[I*2*n*z],(q)^(- n)* Exp[- I*z]+ (q)^(n)* Exp[I*z]], {n, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out