19.23: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E1 19.23.E1] | | | [https://dlmf.nist.gov/19.23.E1 19.23.E1] || <math qid="Q6472">\CarlsonsymellintRF@{0}{y}{z} = \int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-1/2}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{y}{z} = \int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-1/2}\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int((y*(cos(theta))^(2)+(x + y*I)*(sin(theta))^(2))^(- 1/2), theta = 0..Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8397393007192011, 1.792316631638506] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.057179647328743, -0.8381019542468571] | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.057179647328743, -0.8381019542468571] | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E2 19.23.E2] | | | [https://dlmf.nist.gov/19.23.E2 19.23.E2] || <math qid="Q6473">\CarlsonsymellintRG@{0}{y}{z} = \frac{1}{2}\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{1/2}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRG@{0}{y}{z} = \frac{1}{2}\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{1/2}\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == Divide[1,2]*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5014070071339144, -0.6068932953779227], Times[Complex[1.345607733249115, -0.5573689727459014], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9996439786591846, -0.22609983985234913], Times[Complex[1.345607733249115, 0.5573689727459014], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9996439786591846, -0.22609983985234913], Times[Complex[1.345607733249115, 0.5573689727459014], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E3 19.23.E3] | | | [https://dlmf.nist.gov/19.23.E3 19.23.E3] || <math qid="Q6474">\CarlsonsymellintRD@{0}{y}{z} = 3\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-3/2}\sin^{2}@@{\theta}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRD@{0}{y}{z} = 3\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-3/2}\sin^{2}@@{\theta}\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2)) == 3*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 3/2)* (Sin[\[Theta]])^(2), {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E4 19.23.E4] | | | [https://dlmf.nist.gov/19.23.E4 19.23.E4] || <math qid="Q6475">\CarlsonsymellintRF@{0}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E4 19.23.E4] | | | [https://dlmf.nist.gov/19.23.E4 19.23.E4] || <math qid="Q6475">\frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} = \frac{2}{\pi}\int_{0}^{\infty}\CarlsonellintRC@{y\cosh^{2}@@{t}}{z}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} = \frac{2}{\pi}\int_{0}^{\infty}\CarlsonellintRC@{y\cosh^{2}@@{t}}{z}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[2,Pi]*Integrate[1/Sqrt[x + y*I]*Hypergeometric2F1[1/2,1/2,3/2,1-(y*(Cosh[t])^(2))/(x + y*I)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E5 19.23.E5] | | | [https://dlmf.nist.gov/19.23.E5 19.23.E5] || <math qid="Q6476">\CarlsonsymellintRF@{x}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{x}{y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta}}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{x}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{x}{y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{y} > 0, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Divide[2,Pi]*Integrate[1/Sqrt[y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E6 19.23.E6] | | | [https://dlmf.nist.gov/19.23.E6 19.23.E6] || <math qid="Q6477">4\pi\CarlsonsymellintRF@{x}{y}{z} = \int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\frac{\sin@@{\theta}\diff{\theta}\diff{\phi}}{(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta})^{1/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>4\pi\CarlsonsymellintRF@{x}{y}{z} = \int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\frac{\sin@@{\theta}\diff{\theta}\diff{\phi}}{(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>4*Pi*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int(int((sin(theta))/((x*(sin(theta))^(2)* (cos(phi))^(2)+ y*(sin(theta))^(2)* (sin(phi))^(2)+(x + y*I)*(cos(theta))^(2))^(1/2)), theta = 0..Pi), phi = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>4*Pi*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Integrate[Integrate[Divide[Sin[\[Theta]],(x*(Sin[\[Theta]])^(2)* (Cos[\[Phi]])^(2)+ y*(Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)+(x + y*I)*(Cos[\[Theta]])^(2))^(1/2)], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.23.E7 19.23.E7] | | | [https://dlmf.nist.gov/19.23.E7 19.23.E7] || <math qid="Q6478">\CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4}\int_{0}^{\infty}\frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\*\left(\frac{x}{t+x}+\frac{y}{t+y}+\frac{z}{t+z}\right)t\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4}\int_{0}^{\infty}\frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\*\left(\frac{x}{t+x}+\frac{y}{t+y}+\frac{z}{t+z}\right)t\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == Divide[1,4]*Integrate[Divide[1,Sqrt[t + x]*Sqrt[t + y]*Sqrt[t +(x + y*I)]]*(Divide[x,t + x]+Divide[y,t + y]+Divide[x + y*I,t +(x + y*I)])*t, {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:52, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.23.E1 | \CarlsonsymellintRF@{0}{y}{z} = \int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-1/2}\diff{\theta} |
|
0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int((y*(cos(theta))^(2)+(x + y*I)*(sin(theta))^(2))^(- 1/2), theta = 0..Pi/2)
|
EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Aborted | Failure | Skipped - Because timed out | Failed [18 / 18]
Result: Complex[0.8397393007192011, 1.792316631638506]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[-1.057179647328743, -0.8381019542468571]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.23.E2 | \CarlsonsymellintRG@{0}{y}{z} = \frac{1}{2}\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{1/2}\diff{\theta} |
|
Error
|
Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == Divide[1,2]*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Plus[Complex[0.5014070071339144, -0.6068932953779227], Times[Complex[1.345607733249115, -0.5573689727459014], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Plus[Complex[-0.9996439786591846, -0.22609983985234913], Times[Complex[1.345607733249115, 0.5573689727459014], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.23.E3 | \CarlsonsymellintRD@{0}{y}{z} = 3\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-3/2}\sin^{2}@@{\theta}\diff{\theta} |
|
Error
|
3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2)) == 3*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 3/2)* (Sin[\[Theta]])^(2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.23.E4 | \CarlsonsymellintRF@{0}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} |
|
Error
|
EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.23.E4 | \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} = \frac{2}{\pi}\int_{0}^{\infty}\CarlsonellintRC@{y\cosh^{2}@@{t}}{z}\diff{t} |
|
Error
|
Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[2,Pi]*Integrate[1/Sqrt[x + y*I]*Hypergeometric2F1[1/2,1/2,3/2,1-(y*(Cosh[t])^(2))/(x + y*I)], {t, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.23.E5 | \CarlsonsymellintRF@{x}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{x}{y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta}}\diff{\theta} |
Error
|
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Divide[2,Pi]*Integrate[1/Sqrt[y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out | |
19.23.E6 | 4\pi\CarlsonsymellintRF@{x}{y}{z} = \int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\frac{\sin@@{\theta}\diff{\theta}\diff{\phi}}{(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta})^{1/2}} |
|
4*Pi*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int(int((sin(theta))/((x*(sin(theta))^(2)* (cos(phi))^(2)+ y*(sin(theta))^(2)* (sin(phi))^(2)+(x + y*I)*(cos(theta))^(2))^(1/2)), theta = 0..Pi), phi = 0..2*Pi)
|
4*Pi*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Integrate[Integrate[Divide[Sin[\[Theta]],(x*(Sin[\[Theta]])^(2)* (Cos[\[Phi]])^(2)+ y*(Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)+(x + y*I)*(Cos[\[Theta]])^(2))^(1/2)], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None]
|
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.23.E7 | \CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4}\int_{0}^{\infty}\frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\*\left(\frac{x}{t+x}+\frac{y}{t+y}+\frac{z}{t+z}\right)t\diff{t} |
|
Error
|
Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == Divide[1,4]*Integrate[Divide[1,Sqrt[t + x]*Sqrt[t + y]*Sqrt[t +(x + y*I)]]*(Divide[x,t + x]+Divide[y,t + y]+Divide[x + y*I,t +(x + y*I)])*t, {t, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |