18.20: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/18.20.E8 18.20.E8] || [[Item:Q5850|<math>\CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]] == HypergeometricPFQ[{- n , - x}, {-}, - (a)^(- 1)]</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
| [https://dlmf.nist.gov/18.20.E8 18.20.E8] || <math qid="Q5850">\CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]] == HypergeometricPFQ[{- n , - x}, {-}, - (a)^(- 1)]</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/18.20.E9 18.20.E9] || [[Item:Q5851|<math>\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>I^(n)*Divide[Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[a + b] - 1, a + I*(x)}, {a + Conjugate[a], a + Conjugate[b]}, 1] == Divide[(I)^(n)* Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n],(n)!]* HypergeometricPFQ[{- n , n + 2*Re[a + b]- 1 , a + I*x}, {a + Conjugate[a], a + Conjugate[b]}, 1]</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
| [https://dlmf.nist.gov/18.20.E9 18.20.E9] || <math qid="Q5851">\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>I^(n)*Divide[Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[a + b] - 1, a + I*(x)}, {a + Conjugate[a], a + Conjugate[b]}, 1] == Divide[(I)^(n)* Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n],(n)!]* HypergeometricPFQ[{- n , n + 2*Re[a + b]- 1 , a + I*x}, {a + Conjugate[a], a + Conjugate[b]}, 1]</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|}
|}
</div>
</div>

Latest revision as of 11:47, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.20.E8 C n ( x ; a ) = F 0 2 ( - n , - x - ; - a - 1 ) Charlier-polynomial-C 𝑛 𝑥 𝑎 Gauss-hypergeometric-pFq 2 0 𝑛 𝑥 superscript 𝑎 1 {\displaystyle{\displaystyle C_{n}\left(x;a\right)={{}_{2}F_{0}}\left({-n,-x% \atop-};-a^{-1}\right)}}
\CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}

Error
HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]] == HypergeometricPFQ[{- n , - x}, {-}, - (a)^(- 1)]
Missing Macro Error Missing Macro Error - -
18.20.E9 p n ( x ; a , b , a ¯ , b ¯ ) = i n ( a + a ¯ ) n ( a + b ¯ ) n n ! F 2 3 ( - n , n + 2 ( a + b ) - 1 , a + i x a + a ¯ , a + b ¯ ; 1 ) continuous-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑎 𝑏 imaginary-unit 𝑛 Pochhammer 𝑎 𝑎 𝑛 Pochhammer 𝑎 𝑏 𝑛 𝑛 Gauss-hypergeometric-pFq 3 2 𝑛 𝑛 2 𝑎 𝑏 1 𝑎 imaginary-unit 𝑥 𝑎 𝑎 𝑎 𝑏 1 {\displaystyle{\displaystyle p_{n}\left(x;a,b,\overline{a},\overline{b}\right)% =\frac{{\mathrm{i}^{n}}{\left(a+\overline{a}\right)_{n}}{\left(a+\overline{b}% \right)_{n}}}{n!}\*{{}_{3}F_{2}}\left({-n,n+2\Re\left(a+b\right)-1,a+\mathrm{i% }x\atop a+\overline{a},a+\overline{b}};1\right)}}
\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}

Error
I^(n)*Divide[Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[a + b] - 1, a + I*(x)}, {a + Conjugate[a], a + Conjugate[b]}, 1] == Divide[(I)^(n)* Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n],(n)!]* HypergeometricPFQ[{- n , n + 2*Re[a + b]- 1 , a + I*x}, {a + Conjugate[a], a + Conjugate[b]}, 1]
Missing Macro Error Missing Macro Error - -