18.10: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/18.10.E1 18.10.E1] || [[Item:Q5625|<math>\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}} = \frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}} = \frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math>0 < \theta, \theta < \pi, \alpha > -\tfrac{1}{2}</math> || <syntaxhighlight lang=mathematica>(JacobiP(n, alpha, alpha, cos(theta)))/(JacobiP(n, alpha, alpha, 1)) = (GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[n, \[Alpha], \[Alpha], Cos[\[Theta]]],JacobiP[n, \[Alpha], \[Alpha], 1]] == Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 27]
| [https://dlmf.nist.gov/18.10.E1 18.10.E1] || <math qid="Q5625">\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}} = \frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}} = \frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math>0 < \theta, \theta < \pi, \alpha > -\tfrac{1}{2}</math> || <syntaxhighlight lang=mathematica>(JacobiP(n, alpha, alpha, cos(theta)))/(JacobiP(n, alpha, alpha, 1)) = (GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[n, \[Alpha], \[Alpha], Cos[\[Theta]]],JacobiP[n, \[Alpha], \[Alpha], 1]] == Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 27]
|-  
|-  
| [https://dlmf.nist.gov/18.10.E1 18.10.E1] || [[Item:Q5625|<math>\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}} = \frac{2^{\alpha+\frac{1}{2}}\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma@{\alpha+\frac{1}{2}}}(\sin@@{\theta})^{-2\alpha}\int_{0}^{\theta}\frac{\cos@{(n+\alpha+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{-\alpha+\frac{1}{2}}}\diff{\phi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}} = \frac{2^{\alpha+\frac{1}{2}}\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma@{\alpha+\frac{1}{2}}}(\sin@@{\theta})^{-2\alpha}\int_{0}^{\theta}\frac{\cos@{(n+\alpha+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{-\alpha+\frac{1}{2}}}\diff{\phi}</syntaxhighlight> || <math>0 < \theta, \theta < \pi, \alpha > -\tfrac{1}{2}, \realpart@@{(\alpha+1)} > 0, \realpart@@{(\alpha+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>(GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1)) = ((2)^(alpha +(1)/(2))* GAMMA(alpha + 1))/((Pi)^((1)/(2))* GAMMA(alpha +(1)/(2)))*(sin(theta))^(- 2*alpha)* int((cos((n + alpha +(1)/(2))*phi))/((cos(phi)- cos(theta))^(- alpha +(1)/(2))), phi = 0..theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]] == Divide[(2)^(\[Alpha]+Divide[1,2])* Gamma[\[Alpha]+ 1],(Pi)^(Divide[1,2])* Gamma[\[Alpha]+Divide[1,2]]]*(Sin[\[Theta]])^(- 2*\[Alpha])* Integrate[Divide[Cos[(n + \[Alpha]+Divide[1,2])*\[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(- \[Alpha]+Divide[1,2])], {\[Phi], 0, \[Theta]}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 27] || Skipped - Because timed out
| [https://dlmf.nist.gov/18.10.E1 18.10.E1] || <math qid="Q5625">\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}} = \frac{2^{\alpha+\frac{1}{2}}\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma@{\alpha+\frac{1}{2}}}(\sin@@{\theta})^{-2\alpha}\int_{0}^{\theta}\frac{\cos@{(n+\alpha+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{-\alpha+\frac{1}{2}}}\diff{\phi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}} = \frac{2^{\alpha+\frac{1}{2}}\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma@{\alpha+\frac{1}{2}}}(\sin@@{\theta})^{-2\alpha}\int_{0}^{\theta}\frac{\cos@{(n+\alpha+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{-\alpha+\frac{1}{2}}}\diff{\phi}</syntaxhighlight> || <math>0 < \theta, \theta < \pi, \alpha > -\tfrac{1}{2}, \realpart@@{(\alpha+1)} > 0, \realpart@@{(\alpha+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>(GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1)) = ((2)^(alpha +(1)/(2))* GAMMA(alpha + 1))/((Pi)^((1)/(2))* GAMMA(alpha +(1)/(2)))*(sin(theta))^(- 2*alpha)* int((cos((n + alpha +(1)/(2))*phi))/((cos(phi)- cos(theta))^(- alpha +(1)/(2))), phi = 0..theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]] == Divide[(2)^(\[Alpha]+Divide[1,2])* Gamma[\[Alpha]+ 1],(Pi)^(Divide[1,2])* Gamma[\[Alpha]+Divide[1,2]]]*(Sin[\[Theta]])^(- 2*\[Alpha])* Integrate[Divide[Cos[(n + \[Alpha]+Divide[1,2])*\[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(- \[Alpha]+Divide[1,2])], {\[Phi], 0, \[Theta]}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 27] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/18.10.E2 18.10.E2] || [[Item:Q5626|<math>\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{2^{\frac{1}{2}}}{\pi}\int_{0}^{\theta}\frac{\cos@{(n+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{\frac{1}{2}}}\diff{\phi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{2^{\frac{1}{2}}}{\pi}\int_{0}^{\theta}\frac{\cos@{(n+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{\frac{1}{2}}}\diff{\phi}</syntaxhighlight> || <math>0 < \theta, \theta < \pi</math> || <syntaxhighlight lang=mathematica>LegendreP(n, cos(theta)) = ((2)^((1)/(2)))/(Pi)*int((cos((n +(1)/(2))*phi))/((cos(phi)- cos(theta))^((1)/(2))), phi = 0..theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[n, Cos[\[Theta]]] == Divide[(2)^(Divide[1,2]),Pi]*Integrate[Divide[Cos[(n +Divide[1,2])*\[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(Divide[1,2])], {\[Phi], 0, \[Theta]}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out
| [https://dlmf.nist.gov/18.10.E2 18.10.E2] || <math qid="Q5626">\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{2^{\frac{1}{2}}}{\pi}\int_{0}^{\theta}\frac{\cos@{(n+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{\frac{1}{2}}}\diff{\phi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{2^{\frac{1}{2}}}{\pi}\int_{0}^{\theta}\frac{\cos@{(n+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{\frac{1}{2}}}\diff{\phi}</syntaxhighlight> || <math>0 < \theta, \theta < \pi</math> || <syntaxhighlight lang=mathematica>LegendreP(n, cos(theta)) = ((2)^((1)/(2)))/(Pi)*int((cos((n +(1)/(2))*phi))/((cos(phi)- cos(theta))^((1)/(2))), phi = 0..theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[n, Cos[\[Theta]]] == Divide[(2)^(Divide[1,2]),Pi]*Integrate[Divide[Cos[(n +Divide[1,2])*\[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(Divide[1,2])], {\[Phi], 0, \[Theta]}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/18.10.E4 18.10.E4] || [[Item:Q5628|<math>{\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}}=\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}} = \frac{\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma{(\alpha+\tfrac{1}{2})}}\*{\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\*(\sin@@{\phi})^{2\alpha}\diff{\phi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>{\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}}=\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}} = \frac{\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma{(\alpha+\tfrac{1}{2})}}\*{\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\*(\sin@@{\phi})^{2\alpha}\diff{\phi}}</syntaxhighlight> || <math>\alpha > -\frac{1}{2}, \realpart@@{(\alpha+1)} > 0</math> || <syntaxhighlight lang=mathematica>(JacobiP(n, alpha, alpha, cos(theta)))/(JacobiP(n, alpha, alpha, 1)) = (GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1)) = (GAMMA(alpha + 1))/((Pi)^((1)/(2))* GAMMA(alpha +(1)/(2)))*int((cos(theta)+ I*sin(theta)*cos(phi))^(n)*(sin(phi))^(2*alpha), phi = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[n, \[Alpha], \[Alpha], Cos[\[Theta]]],JacobiP[n, \[Alpha], \[Alpha], 1]] == Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]] == Divide[Gamma[\[Alpha]+ 1],(Pi)^(Divide[1,2])* Gamma[\[Alpha]+Divide[1,2]]]*Integrate[(Cos[\[Theta]]+ I*Sin[\[Theta]]*Cos[\[Phi]])^(n)*(Sin[\[Phi]])^(2*\[Alpha]), {\[Phi], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/18.10.E4 18.10.E4] || <math qid="Q5628">{\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}}=\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}} = \frac{\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma{(\alpha+\tfrac{1}{2})}}\*{\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\*(\sin@@{\phi})^{2\alpha}\diff{\phi}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>{\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}}=\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}} = \frac{\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma{(\alpha+\tfrac{1}{2})}}\*{\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\*(\sin@@{\phi})^{2\alpha}\diff{\phi}}</syntaxhighlight> || <math>\alpha > -\frac{1}{2}, \realpart@@{(\alpha+1)} > 0</math> || <syntaxhighlight lang=mathematica>(JacobiP(n, alpha, alpha, cos(theta)))/(JacobiP(n, alpha, alpha, 1)) = (GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1)) = (GAMMA(alpha + 1))/((Pi)^((1)/(2))* GAMMA(alpha +(1)/(2)))*int((cos(theta)+ I*sin(theta)*cos(phi))^(n)*(sin(phi))^(2*alpha), phi = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[n, \[Alpha], \[Alpha], Cos[\[Theta]]],JacobiP[n, \[Alpha], \[Alpha], 1]] == Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]] == Divide[Gamma[\[Alpha]+ 1],(Pi)^(Divide[1,2])* Gamma[\[Alpha]+Divide[1,2]]]*Integrate[(Cos[\[Theta]]+ I*Sin[\[Theta]]*Cos[\[Phi]])^(n)*(Sin[\[Phi]])^(2*\[Alpha]), {\[Phi], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/18.10.E5 18.10.E5] || [[Item:Q5629|<math>\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{1}{\pi}\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\diff{\phi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{1}{\pi}\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\diff{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(n, cos(theta)) = (1)/(Pi)*int((cos(theta)+ I*sin(theta)*cos(phi))^(n), phi = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[n, Cos[\[Theta]]] == Divide[1,Pi]*Integrate[(Cos[\[Theta]]+ I*Sin[\[Theta]]*Cos[\[Phi]])^(n), {\[Phi], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 30] || Skipped - Because timed out
| [https://dlmf.nist.gov/18.10.E5 18.10.E5] || <math qid="Q5629">\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{1}{\pi}\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\diff{\phi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{1}{\pi}\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\diff{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(n, cos(theta)) = (1)/(Pi)*int((cos(theta)+ I*sin(theta)*cos(phi))^(n), phi = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[n, Cos[\[Theta]]] == Divide[1,Pi]*Integrate[(Cos[\[Theta]]+ I*Sin[\[Theta]]*Cos[\[Phi]])^(n), {\[Phi], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 30] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/18.10.E7 18.10.E7] || [[Item:Q5631|<math>\HermitepolyH{n}@{x} = \frac{2^{n}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}(x+it)^{n}e^{-t^{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{n}@{x} = \frac{2^{n}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}(x+it)^{n}e^{-t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(n, x) = ((2)^(n))/((Pi)^((1)/(2)))*int((x + I*t)^(n)* exp(- (t)^(2)), t = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[n, x] == Divide[(2)^(n),(Pi)^(Divide[1,2])]*Integrate[(x + I*t)^(n)* Exp[- (t)^(2)], {t, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/18.10.E7 18.10.E7] || <math qid="Q5631">\HermitepolyH{n}@{x} = \frac{2^{n}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}(x+it)^{n}e^{-t^{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{n}@{x} = \frac{2^{n}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}(x+it)^{n}e^{-t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(n, x) = ((2)^(n))/((Pi)^((1)/(2)))*int((x + I*t)^(n)* exp(- (t)^(2)), t = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[n, x] == Divide[(2)^(n),(Pi)^(Divide[1,2])]*Integrate[(x + I*t)^(n)* Exp[- (t)^(2)], {t, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/18.10.E9 18.10.E9] || [[Item:Q5633|<math>\LaguerrepolyL[\alpha]{n}@{x} = \frac{e^{x}x^{-\frac{1}{2}\alpha}}{n!}\int_{0}^{\infty}e^{-t}t^{n+\frac{1}{2}\alpha}\BesselJ{\alpha}@{2\sqrt{xt}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LaguerrepolyL[\alpha]{n}@{x} = \frac{e^{x}x^{-\frac{1}{2}\alpha}}{n!}\int_{0}^{\infty}e^{-t}t^{n+\frac{1}{2}\alpha}\BesselJ{\alpha}@{2\sqrt{xt}}\diff{t}</syntaxhighlight> || <math>\alpha > -1, \realpart@@{((\alpha)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>LaguerreL(n, alpha, x) = (exp(x)*(x)^(-(1)/(2)*alpha))/(factorial(n))*int(exp(- t)*(t)^(n +(1)/(2)*alpha)* BesselJ(alpha, 2*sqrt(x*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LaguerreL[n, \[Alpha], x] == Divide[Exp[x]*(x)^(-Divide[1,2]*\[Alpha]),(n)!]*Integrate[Exp[- t]*(t)^(n +Divide[1,2]*\[Alpha])* BesselJ[\[Alpha], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/18.10.E9 18.10.E9] || <math qid="Q5633">\LaguerrepolyL[\alpha]{n}@{x} = \frac{e^{x}x^{-\frac{1}{2}\alpha}}{n!}\int_{0}^{\infty}e^{-t}t^{n+\frac{1}{2}\alpha}\BesselJ{\alpha}@{2\sqrt{xt}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LaguerrepolyL[\alpha]{n}@{x} = \frac{e^{x}x^{-\frac{1}{2}\alpha}}{n!}\int_{0}^{\infty}e^{-t}t^{n+\frac{1}{2}\alpha}\BesselJ{\alpha}@{2\sqrt{xt}}\diff{t}</syntaxhighlight> || <math>\alpha > -1, \realpart@@{((\alpha)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>LaguerreL(n, alpha, x) = (exp(x)*(x)^(-(1)/(2)*alpha))/(factorial(n))*int(exp(- t)*(t)^(n +(1)/(2)*alpha)* BesselJ(alpha, 2*sqrt(x*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LaguerreL[n, \[Alpha], x] == Divide[Exp[x]*(x)^(-Divide[1,2]*\[Alpha]),(n)!]*Integrate[Exp[- t]*(t)^(n +Divide[1,2]*\[Alpha])* BesselJ[\[Alpha], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/18.10.E10 18.10.E10] || [[Item:Q5634|<math>\HermitepolyH{n}@{x} = \frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{n}@{x} = \frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(n, x) = ((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[n, x] == Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.10.E10 18.10.E10] || <math qid="Q5634">\HermitepolyH{n}@{x} = \frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{n}@{x} = \frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(n, x) = ((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[n, x] == Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.10.E10 18.10.E10] || [[Item:Q5634|<math>\frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t} = \frac{2^{n+1}}{\pi^{\frac{1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos@{2xt-\tfrac{1}{2}n\pi}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t} = \frac{2^{n+1}}{\pi^{\frac{1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos@{2xt-\tfrac{1}{2}n\pi}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity) = ((2)^(n + 1))/((Pi)^((1)/(2)))*exp((x)^(2))*int(exp(- (t)^(2))*(t)^(n)* cos(2*x*t -(1)/(2)*n*Pi), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(2)^(n + 1),(Pi)^(Divide[1,2])]*Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Cos[2*x*t -Divide[1,2]*n*Pi], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.10.E10 18.10.E10] || <math qid="Q5634">\frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t} = \frac{2^{n+1}}{\pi^{\frac{1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos@{2xt-\tfrac{1}{2}n\pi}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t} = \frac{2^{n+1}}{\pi^{\frac{1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos@{2xt-\tfrac{1}{2}n\pi}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity) = ((2)^(n + 1))/((Pi)^((1)/(2)))*exp((x)^(2))*int(exp(- (t)^(2))*(t)^(n)* cos(2*x*t -(1)/(2)*n*Pi), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(2)^(n + 1),(Pi)^(Divide[1,2])]*Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Cos[2*x*t -Divide[1,2]*n*Pi], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Successful [Tested: 9]
|}
|}
</div>
</div>

Latest revision as of 11:45, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.10.E1 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) Jacobi-polynomial-P 𝛼 𝛼 𝑛 𝜃 Jacobi-polynomial-P 𝛼 𝛼 𝑛 1 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 𝜃 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 1 {\displaystyle{\displaystyle\frac{P^{(\alpha,\alpha)}_{n}\left(\cos\theta% \right)}{P^{(\alpha,\alpha)}_{n}\left(1\right)}=\frac{C^{(\alpha+\frac{1}{2})}% _{n}\left(\cos\theta\right)}{C^{(\alpha+\frac{1}{2})}_{n}\left(1\right)}}}
\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}} = \frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}
0 < θ , θ < π , α > - 1 2 formulae-sequence 0 𝜃 formulae-sequence 𝜃 𝜋 𝛼 1 2 {\displaystyle{\displaystyle 0<\theta,\theta<\pi,\alpha>-\tfrac{1}{2}}}
(JacobiP(n, alpha, alpha, cos(theta)))/(JacobiP(n, alpha, alpha, 1)) = (GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1))
Divide[JacobiP[n, \[Alpha], \[Alpha], Cos[\[Theta]]],JacobiP[n, \[Alpha], \[Alpha], 1]] == Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 27]
18.10.E1 C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) - 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ - cos θ ) - α + 1 2 d ϕ ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 𝜃 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 1 superscript 2 𝛼 1 2 Euler-Gamma 𝛼 1 superscript 𝜋 1 2 Euler-Gamma 𝛼 1 2 superscript 𝜃 2 𝛼 superscript subscript 0 𝜃 𝑛 𝛼 1 2 italic-ϕ superscript italic-ϕ 𝜃 𝛼 1 2 italic-ϕ {\displaystyle{\displaystyle\frac{C^{(\alpha+\frac{1}{2})}_{n}\left(\cos\theta% \right)}{C^{(\alpha+\frac{1}{2})}_{n}\left(1\right)}=\frac{2^{\alpha+\frac{1}{% 2}}\Gamma\left(\alpha+1\right)}{\pi^{\frac{1}{2}}\Gamma\left(\alpha+\frac{1}{2% }\right)}(\sin\theta)^{-2\alpha}\int_{0}^{\theta}\frac{\cos\left((n+\alpha+% \tfrac{1}{2})\phi\right)}{(\cos\phi-\cos\theta)^{-\alpha+\frac{1}{2}}}\mathrm{% d}\phi}}
\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}} = \frac{2^{\alpha+\frac{1}{2}}\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma@{\alpha+\frac{1}{2}}}(\sin@@{\theta})^{-2\alpha}\int_{0}^{\theta}\frac{\cos@{(n+\alpha+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{-\alpha+\frac{1}{2}}}\diff{\phi}
0 < θ , θ < π , α > - 1 2 , ( α + 1 ) > 0 , ( α + 1 2 ) > 0 formulae-sequence 0 𝜃 formulae-sequence 𝜃 𝜋 formulae-sequence 𝛼 1 2 formulae-sequence 𝛼 1 0 𝛼 1 2 0 {\displaystyle{\displaystyle 0<\theta,\theta<\pi,\alpha>-\tfrac{1}{2},\Re(% \alpha+1)>0,\Re(\alpha+\frac{1}{2})>0}}
(GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1)) = ((2)^(alpha +(1)/(2))* GAMMA(alpha + 1))/((Pi)^((1)/(2))* GAMMA(alpha +(1)/(2)))*(sin(theta))^(- 2*alpha)* int((cos((n + alpha +(1)/(2))*phi))/((cos(phi)- cos(theta))^(- alpha +(1)/(2))), phi = 0..theta)
Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]] == Divide[(2)^(\[Alpha]+Divide[1,2])* Gamma[\[Alpha]+ 1],(Pi)^(Divide[1,2])* Gamma[\[Alpha]+Divide[1,2]]]*(Sin[\[Theta]])^(- 2*\[Alpha])* Integrate[Divide[Cos[(n + \[Alpha]+Divide[1,2])*\[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(- \[Alpha]+Divide[1,2])], {\[Phi], 0, \[Theta]}, GenerateConditions->None]
Failure Aborted Successful [Tested: 27] Skipped - Because timed out
18.10.E2 P n ( cos θ ) = 2 1 2 π 0 θ cos ( ( n + 1 2 ) ϕ ) ( cos ϕ - cos θ ) 1 2 d ϕ Legendre-spherical-polynomial 𝑛 𝜃 superscript 2 1 2 𝜋 superscript subscript 0 𝜃 𝑛 1 2 italic-ϕ superscript italic-ϕ 𝜃 1 2 italic-ϕ {\displaystyle{\displaystyle P_{n}\left(\cos\theta\right)=\frac{2^{\frac{1}{2}% }}{\pi}\int_{0}^{\theta}\frac{\cos\left((n+\tfrac{1}{2})\phi\right)}{(\cos\phi% -\cos\theta)^{\frac{1}{2}}}\mathrm{d}\phi}}
\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{2^{\frac{1}{2}}}{\pi}\int_{0}^{\theta}\frac{\cos@{(n+\tfrac{1}{2})\phi}}{(\cos@@{\phi}-\cos@@{\theta})^{\frac{1}{2}}}\diff{\phi}
0 < θ , θ < π formulae-sequence 0 𝜃 𝜃 𝜋 {\displaystyle{\displaystyle 0<\theta,\theta<\pi}}
LegendreP(n, cos(theta)) = ((2)^((1)/(2)))/(Pi)*int((cos((n +(1)/(2))*phi))/((cos(phi)- cos(theta))^((1)/(2))), phi = 0..theta)
LegendreP[n, Cos[\[Theta]]] == Divide[(2)^(Divide[1,2]),Pi]*Integrate[Divide[Cos[(n +Divide[1,2])*\[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(Divide[1,2])], {\[Phi], 0, \[Theta]}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
18.10.E4 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) 0 π ( cos θ + i sin θ cos ϕ ) n ( sin ϕ ) 2 α d ϕ Jacobi-polynomial-P 𝛼 𝛼 𝑛 𝜃 Jacobi-polynomial-P 𝛼 𝛼 𝑛 1 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 𝜃 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 1 Euler-Gamma 𝛼 1 superscript 𝜋 1 2 Euler-Gamma 𝛼 1 2 superscript subscript 0 𝜋 superscript 𝜃 𝑖 𝜃 italic-ϕ 𝑛 superscript italic-ϕ 2 𝛼 italic-ϕ {\displaystyle{\displaystyle{\frac{P^{(\alpha,\alpha)}_{n}\left(\cos\theta% \right)}{P^{(\alpha,\alpha)}_{n}\left(1\right)}=\frac{C^{(\alpha+\frac{1}{2})}% _{n}\left(\cos\theta\right)}{C^{(\alpha+\frac{1}{2})}_{n}\left(1\right)}}=% \frac{\Gamma\left(\alpha+1\right)}{\pi^{\frac{1}{2}}\Gamma{(\alpha+\tfrac{1}{2% })}}\*{\int_{0}^{\pi}(\cos\theta+i\sin\theta\cos\phi)^{n}\*(\sin\phi)^{2\alpha% }\mathrm{d}\phi}}}
{\frac{\JacobipolyP{\alpha}{\alpha}{n}@{\cos@@{\theta}}}{\JacobipolyP{\alpha}{\alpha}{n}@{1}}=\frac{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{\cos@@{\theta}}}{\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{1}}} = \frac{\EulerGamma@{\alpha+1}}{\pi^{\frac{1}{2}}\EulerGamma{(\alpha+\tfrac{1}{2})}}\*{\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\*(\sin@@{\phi})^{2\alpha}\diff{\phi}}
α > - 1 2 , ( α + 1 ) > 0 formulae-sequence 𝛼 1 2 𝛼 1 0 {\displaystyle{\displaystyle\alpha>-\frac{1}{2},\Re(\alpha+1)>0}}
(JacobiP(n, alpha, alpha, cos(theta)))/(JacobiP(n, alpha, alpha, 1)) = (GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1)) = (GAMMA(alpha + 1))/((Pi)^((1)/(2))* GAMMA(alpha +(1)/(2)))*int((cos(theta)+ I*sin(theta)*cos(phi))^(n)*(sin(phi))^(2*alpha), phi = 0..Pi)
Divide[JacobiP[n, \[Alpha], \[Alpha], Cos[\[Theta]]],JacobiP[n, \[Alpha], \[Alpha], 1]] == Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]] == Divide[Gamma[\[Alpha]+ 1],(Pi)^(Divide[1,2])* Gamma[\[Alpha]+Divide[1,2]]]*Integrate[(Cos[\[Theta]]+ I*Sin[\[Theta]]*Cos[\[Phi]])^(n)*(Sin[\[Phi]])^(2*\[Alpha]), {\[Phi], 0, Pi}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
18.10.E5 P n ( cos θ ) = 1 π 0 π ( cos θ + i sin θ cos ϕ ) n d ϕ Legendre-spherical-polynomial 𝑛 𝜃 1 𝜋 superscript subscript 0 𝜋 superscript 𝜃 𝑖 𝜃 italic-ϕ 𝑛 italic-ϕ {\displaystyle{\displaystyle P_{n}\left(\cos\theta\right)=\frac{1}{\pi}\int_{0% }^{\pi}(\cos\theta+i\sin\theta\cos\phi)^{n}\mathrm{d}\phi}}
\LegendrepolyP{n}@{\cos@@{\theta}} = \frac{1}{\pi}\int_{0}^{\pi}(\cos@@{\theta}+i\sin@@{\theta}\cos@@{\phi})^{n}\diff{\phi}

LegendreP(n, cos(theta)) = (1)/(Pi)*int((cos(theta)+ I*sin(theta)*cos(phi))^(n), phi = 0..Pi)
LegendreP[n, Cos[\[Theta]]] == Divide[1,Pi]*Integrate[(Cos[\[Theta]]+ I*Sin[\[Theta]]*Cos[\[Phi]])^(n), {\[Phi], 0, Pi}, GenerateConditions->None]
Failure Aborted Successful [Tested: 30] Skipped - Because timed out
18.10.E7 H n ( x ) = 2 n π 1 2 - ( x + i t ) n e - t 2 d t Hermite-polynomial-H 𝑛 𝑥 superscript 2 𝑛 superscript 𝜋 1 2 superscript subscript superscript 𝑥 𝑖 𝑡 𝑛 superscript 𝑒 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle H_{n}\left(x\right)=\frac{2^{n}}{\pi^{\frac{1}{2}% }}\int_{-\infty}^{\infty}(x+it)^{n}e^{-t^{2}}\mathrm{d}t}}
\HermitepolyH{n}@{x} = \frac{2^{n}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}(x+it)^{n}e^{-t^{2}}\diff{t}

HermiteH(n, x) = ((2)^(n))/((Pi)^((1)/(2)))*int((x + I*t)^(n)* exp(- (t)^(2)), t = - infinity..infinity)
HermiteH[n, x] == Divide[(2)^(n),(Pi)^(Divide[1,2])]*Integrate[(x + I*t)^(n)* Exp[- (t)^(2)], {t, - Infinity, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 9]
Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5]}

... skip entries to safe data
18.10.E9 L n ( α ) ( x ) = e x x - 1 2 α n ! 0 e - t t n + 1 2 α J α ( 2 x t ) d t Laguerre-polynomial-L 𝛼 𝑛 𝑥 superscript 𝑒 𝑥 superscript 𝑥 1 2 𝛼 𝑛 superscript subscript 0 superscript 𝑒 𝑡 superscript 𝑡 𝑛 1 2 𝛼 Bessel-J 𝛼 2 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle L^{(\alpha)}_{n}\left(x\right)=\frac{e^{x}x^{-% \frac{1}{2}\alpha}}{n!}\int_{0}^{\infty}e^{-t}t^{n+\frac{1}{2}\alpha}J_{\alpha% }\left(2\sqrt{xt}\right)\mathrm{d}t}}
\LaguerrepolyL[\alpha]{n}@{x} = \frac{e^{x}x^{-\frac{1}{2}\alpha}}{n!}\int_{0}^{\infty}e^{-t}t^{n+\frac{1}{2}\alpha}\BesselJ{\alpha}@{2\sqrt{xt}}\diff{t}
α > - 1 , ( ( α ) + k + 1 ) > 0 formulae-sequence 𝛼 1 𝛼 𝑘 1 0 {\displaystyle{\displaystyle\alpha>-1,\Re((\alpha)+k+1)>0}}
LaguerreL(n, alpha, x) = (exp(x)*(x)^(-(1)/(2)*alpha))/(factorial(n))*int(exp(- t)*(t)^(n +(1)/(2)*alpha)* BesselJ(alpha, 2*sqrt(x*t)), t = 0..infinity)
LaguerreL[n, \[Alpha], x] == Divide[Exp[x]*(x)^(-Divide[1,2]*\[Alpha]),(n)!]*Integrate[Exp[- t]*(t)^(n +Divide[1,2]*\[Alpha])* BesselJ[\[Alpha], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
18.10.E10 H n ( x ) = ( - 2 i ) n e x 2 π 1 2 - e - t 2 t n e 2 i x t d t Hermite-polynomial-H 𝑛 𝑥 superscript 2 𝑖 𝑛 superscript 𝑒 superscript 𝑥 2 superscript 𝜋 1 2 superscript subscript superscript 𝑒 superscript 𝑡 2 superscript 𝑡 𝑛 superscript 𝑒 2 𝑖 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle H_{n}\left(x\right)=\frac{(-2i)^{n}e^{x^{2}}}{\pi% ^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\mathrm{d}t}}
\HermitepolyH{n}@{x} = \frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t}

HermiteH(n, x) = ((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity)
HermiteH[n, x] == Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
18.10.E10 ( - 2 i ) n e x 2 π 1 2 - e - t 2 t n e 2 i x t d t = 2 n + 1 π 1 2 e x 2 0 e - t 2 t n cos ( 2 x t - 1 2 n π ) d t superscript 2 𝑖 𝑛 superscript 𝑒 superscript 𝑥 2 superscript 𝜋 1 2 superscript subscript superscript 𝑒 superscript 𝑡 2 superscript 𝑡 𝑛 superscript 𝑒 2 𝑖 𝑥 𝑡 𝑡 superscript 2 𝑛 1 superscript 𝜋 1 2 superscript 𝑒 superscript 𝑥 2 superscript subscript 0 superscript 𝑒 superscript 𝑡 2 superscript 𝑡 𝑛 2 𝑥 𝑡 1 2 𝑛 𝜋 𝑡 {\displaystyle{\displaystyle\frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{% -\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\mathrm{d}t=\frac{2^{n+1}}{\pi^{\frac{% 1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos\left(2xt-\tfrac{1}{2}n\pi% \right)\mathrm{d}t}}
\frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\diff{t} = \frac{2^{n+1}}{\pi^{\frac{1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos@{2xt-\tfrac{1}{2}n\pi}\diff{t}

((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity) = ((2)^(n + 1))/((Pi)^((1)/(2)))*exp((x)^(2))*int(exp(- (t)^(2))*(t)^(n)* cos(2*x*t -(1)/(2)*n*Pi), t = 0..infinity)
Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(2)^(n + 1),(Pi)^(Divide[1,2])]*Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Cos[2*x*t -Divide[1,2]*n*Pi], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Successful [Tested: 9]