18.1: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/18.1#Ex7 18.1#Ex7] || [[Item:Q5481|<math>\qPochhammer{z}{q}{0} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qPochhammer{z}{q}{0} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QPochhammer(z, q, 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>QPochhammer[z, q, 0] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/18.1#Ex7 18.1#Ex7] || <math qid="Q5481">\qPochhammer{z}{q}{0} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qPochhammer{z}{q}{0} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QPochhammer(z, q, 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>QPochhammer[z, q, 0] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/18.1#Ex10 18.1#Ex10] || [[Item:Q5484|<math>\qPochhammer{z}{q}{\infty} = \prod_{j=0}^{\infty}(1-zq^{j})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qPochhammer{z}{q}{\infty} = \prod_{j=0}^{\infty}(1-zq^{j})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QPochhammer(z, q, infinity) = product(1 - z*(q)^(j), j = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QPochhammer[z, q, Infinity] == Product[1 - z*(q)^(j), {j, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [56 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Times[-1.0, QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
| [https://dlmf.nist.gov/18.1#Ex10 18.1#Ex10] || <math qid="Q5484">\qPochhammer{z}{q}{\infty} = \prod_{j=0}^{\infty}(1-zq^{j})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qPochhammer{z}{q}{\infty} = \prod_{j=0}^{\infty}(1-zq^{j})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QPochhammer(z, q, infinity) = product(1 - z*(q)^(j), j = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QPochhammer[z, q, Infinity] == Product[1 - z*(q)^(j), {j, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [56 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Times[-1.0, QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Times[-1.0, QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Times[-1.0, QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/18.1.E1 18.1.E1] || [[Item:Q5486|<math>\ultrasphpoly{0}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{0}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, 0, x) = (2)/(n)*ChebyshevT(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, 0, x] == Divide[2,n]*ChebyshevT[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.0
| [https://dlmf.nist.gov/18.1.E1 18.1.E1] || <math qid="Q5486">\ultrasphpoly{0}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{0}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, 0, x) = (2)/(n)*ChebyshevT(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, 0, x] == Divide[2,n]*ChebyshevT[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.0
Test Values: {Rule[n, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.6666666666666666
Test Values: {Rule[n, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.6666666666666666
Test Values: {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/18.1.E1 18.1.E1] || [[Item:Q5486|<math>\frac{2}{n}\ChebyshevpolyT{n}@{x} = \frac{2(n-1)!}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{n}\ChebyshevpolyT{n}@{x} = \frac{2(n-1)!}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(n)*ChebyshevT(n, x) = (2*factorial(n - 1))/(pochhammer((1)/(2), n))*JacobiP(n, -(1)/(2), -(1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,n]*ChebyshevT[n, x] == Divide[2*(n - 1)!,Pochhammer[Divide[1,2], n]]*JacobiP[n, -Divide[1,2], -Divide[1,2], x]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
| [https://dlmf.nist.gov/18.1.E1 18.1.E1] || <math qid="Q5486">\frac{2}{n}\ChebyshevpolyT{n}@{x} = \frac{2(n-1)!}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{n}\ChebyshevpolyT{n}@{x} = \frac{2(n-1)!}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(n)*ChebyshevT(n, x) = (2*factorial(n - 1))/(pochhammer((1)/(2), n))*JacobiP(n, -(1)/(2), -(1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,n]*ChebyshevT[n, x] == Divide[2*(n - 1)!,Pochhammer[Divide[1,2], n]]*JacobiP[n, -Divide[1,2], -Divide[1,2], x]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/18.1.E2 18.1.E2] || [[Item:Q5487|<math>\shiftJacobipolyG{n}@{p}{q}{x} = \frac{n!}{\Pochhammersym{n+p}{n}}\JacobipolyP{p-q}{q-1}{n}@{2x-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\shiftJacobipolyG{n}@{p}{q}{x} = \frac{n!}{\Pochhammersym{n+p}{n}}\JacobipolyP{p-q}{q-1}{n}@{2x-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiP(n, p-q, q-1, 2*(x)-1)*((n)!)/pochhammer(n+p, n) = (factorial(n))/(pochhammer(n + p, n))*JacobiP(n, p - q, q - 1, 2*x - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
| [https://dlmf.nist.gov/18.1.E2 18.1.E2] || <math qid="Q5487">\shiftJacobipolyG{n}@{p}{q}{x} = \frac{n!}{\Pochhammersym{n+p}{n}}\JacobipolyP{p-q}{q-1}{n}@{2x-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\shiftJacobipolyG{n}@{p}{q}{x} = \frac{n!}{\Pochhammersym{n+p}{n}}\JacobipolyP{p-q}{q-1}{n}@{2x-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiP(n, p-q, q-1, 2*(x)-1)*((n)!)/pochhammer(n+p, n) = (factorial(n))/(pochhammer(n + p, n))*JacobiP(n, p - q, q - 1, 2*x - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
|}
|}
</div>
</div>

Latest revision as of 11:44, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.1#Ex7 ( z ; q ) 0 = 1 q-Pochhammer-symbol 𝑧 𝑞 0 1 {\displaystyle{\displaystyle\left(z;q\right)_{0}=1}}
\qPochhammer{z}{q}{0} = 1

QPochhammer(z, q, 0) = 1
QPochhammer[z, q, 0] == 1
Successful Successful - Successful [Tested: 70]
18.1#Ex10 ( z ; q ) = j = 0 ( 1 - z q j ) q-Pochhammer-symbol 𝑧 𝑞 superscript subscript product 𝑗 0 1 𝑧 superscript 𝑞 𝑗 {\displaystyle{\displaystyle\left(z;q\right)_{\infty}=\prod_{j=0}^{\infty}(1-% zq^{j})}}
\qPochhammer{z}{q}{\infty} = \prod_{j=0}^{\infty}(1-zq^{j})

QPochhammer(z, q, infinity) = product(1 - z*(q)^(j), j = 0..infinity)
QPochhammer[z, q, Infinity] == Product[1 - z*(q)^(j), {j, 0, Infinity}, GenerateConditions->None]
Failure Failure Error
Failed [56 / 70]
Result: Plus[Times[-1.0, QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Times[-1.0, QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
18.1.E1 C n ( 0 ) ( x ) = 2 n T n ( x ) ultraspherical-Gegenbauer-polynomial 0 𝑛 𝑥 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 𝑥 {\displaystyle{\displaystyle C^{(0)}_{n}\left(x\right)=\frac{2}{n}T_{n}\left(x% \right)}}
\ultrasphpoly{0}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}

GegenbauerC(n, 0, x) = (2)/(n)*ChebyshevT(n, x)
GegenbauerC[n, 0, x] == Divide[2,n]*ChebyshevT[n, x]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: -6.0
Test Values: {Rule[n, 3], Rule[x, 1.5]}

Result: 0.6666666666666666
Test Values: {Rule[n, 3], Rule[x, 0.5]}

... skip entries to safe data
18.1.E1 2 n T n ( x ) = 2 ( n - 1 ) ! ( 1 2 ) n P n ( - 1 2 , - 1 2 ) ( x ) 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 𝑥 2 𝑛 1 Pochhammer 1 2 𝑛 Jacobi-polynomial-P 1 2 1 2 𝑛 𝑥 {\displaystyle{\displaystyle\frac{2}{n}T_{n}\left(x\right)=\frac{2(n-1)!}{{% \left(\tfrac{1}{2}\right)_{n}}}P^{(-\frac{1}{2},-\frac{1}{2})}_{n}\left(x% \right)}}
\frac{2}{n}\ChebyshevpolyT{n}@{x} = \frac{2(n-1)!}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}

(2)/(n)*ChebyshevT(n, x) = (2*factorial(n - 1))/(pochhammer((1)/(2), n))*JacobiP(n, -(1)/(2), -(1)/(2), x)
Divide[2,n]*ChebyshevT[n, x] == Divide[2*(n - 1)!,Pochhammer[Divide[1,2], n]]*JacobiP[n, -Divide[1,2], -Divide[1,2], x]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 3]
18.1.E2 G n ( p , q , x ) = n ! ( n + p ) n P n ( p - q , q - 1 ) ( 2 x - 1 ) shifted-Jacobi-polynomial-G 𝑛 𝑝 𝑞 𝑥 𝑛 Pochhammer 𝑛 𝑝 𝑛 Jacobi-polynomial-P 𝑝 𝑞 𝑞 1 𝑛 2 𝑥 1 {\displaystyle{\displaystyle G_{n}\left(p,q,x\right)=\frac{n!}{{\left(n+p% \right)_{n}}}P^{(p-q,q-1)}_{n}\left(2x-1\right)}}
\shiftJacobipolyG{n}@{p}{q}{x} = \frac{n!}{\Pochhammersym{n+p}{n}}\JacobipolyP{p-q}{q-1}{n}@{2x-1}

JacobiP(n, p-q, q-1, 2*(x)-1)*((n)!)/pochhammer(n+p, n) = (factorial(n))/(pochhammer(n + p, n))*JacobiP(n, p - q, q - 1, 2*x - 1)
Error
Successful Missing Macro Error - -