15.5: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E1 15.5.E1] | | | [https://dlmf.nist.gov/15.5.E1 15.5.E1] || <math qid="Q5018">\deriv{}{z}\hyperF@{a}{b}{c}{z} = \frac{ab}{c}\hyperF@{a+1}{b+1}{c+1}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\hyperF@{a}{b}{c}{z} = \frac{ab}{c}\hyperF@{a+1}{b+1}{c+1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(hypergeom([a, b], [c], z), z) = (a*b)/(c)*hypergeom([a + 1, b + 1], [c + 1], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Hypergeometric2F1[a, b, c, z], z] == Divide[a*b,c]*Hypergeometric2F1[a + 1, b + 1, c + 1, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E2 15.5.E2] | | | [https://dlmf.nist.gov/15.5.E2 15.5.E2] || <math qid="Q5019">\deriv[n]{}{z}\hyperF@{a}{b}{c}{z} = \frac{\Pochhammersym{a}{n}\Pochhammersym{b}{n}}{\Pochhammersym{c}{n}}\*\hyperF@{a+n}{b+n}{c+n}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\hyperF@{a}{b}{c}{z} = \frac{\Pochhammersym{a}{n}\Pochhammersym{b}{n}}{\Pochhammersym{c}{n}}\*\hyperF@{a+n}{b+n}{c+n}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(hypergeom([a, b], [c], z), [z$(n)]) = (pochhammer(a, n)*pochhammer(b, n))/(pochhammer(c, n))* hypergeom([a + n, b + n], [c + n], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Hypergeometric2F1[a, b, c, z], {z, n}] == Divide[Pochhammer[a, n]*Pochhammer[b, n],Pochhammer[c, n]]* Hypergeometric2F1[a + n, b + n, c + n, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E3 15.5.E3] | | | [https://dlmf.nist.gov/15.5.E3 15.5.E3] || <math qid="Q5020">\left(z\deriv{}{z}z\right)^{n}\left(z^{a-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{a}{n}z^{a+n-1}\hyperF@{a+n}{b}{c}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(z\deriv{}{z}z\right)^{n}\left(z^{a-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{a}{n}z^{a+n-1}\hyperF@{a+n}{b}{c}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z*diff(z, z))^(n)*((z)^(a - 1)* hypergeom([a, b], [c], z)) = pochhammer(a, n)*(z)^(a + n - 1)* hypergeom([a + n, b], [c], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z*D[z, z])^(n)*((z)^(a - 1)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[a, n]*(z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c, z]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [298 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.047155237894918, -4.15915132240068] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.9084280791008837, -0.4608118321937779] | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.9084280791008837, -0.4608118321937779] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E4 15.5.E4] | | | [https://dlmf.nist.gov/15.5.E4 15.5.E4] || <math qid="Q5021">\deriv[n]{}{z}\left(z^{c-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}\hyperF@{a}{b}{c-n}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(z^{c-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}\hyperF@{a}{b}{c-n}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((z)^(c - 1)* hypergeom([a, b], [c], z), [z$(n)]) = pochhammer(c - n, n)*(z)^(c - n - 1)* hypergeom([a, b], [c - n], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(z)^(c - 1)* Hypergeometric2F1[a, b, c, z], {z, n}] == Pochhammer[c - n, n]*(z)^(c - n - 1)* Hypergeometric2F1[a, b, c - n, z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-10.313412337740687, -15.40985641083086], Times[Complex[-2.9282032302755074, -10.928203230275509], DifferenceRoot[Function[{, } | ||
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 1], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 1], Times[-1, Power[, 2], 1], Times[-1, -1.5, 1], Times[-1, , -1.5, 1], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, <syntaxhighlight lang=mathematica>Result: Plus[Complex[123.08315470740952, 79.99762770469566], Times[Complex[-31.999999999999993, -32.0], DifferenceRoot[Function[{, } | Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 1], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 1], Times[-1, Power[, 2], 1], Times[-1, -1.5, 1], Times[-1, , -1.5, 1], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, <syntaxhighlight lang=mathematica>Result: Plus[Complex[123.08315470740952, 79.99762770469566], Times[Complex[-31.999999999999993, -32.0], DifferenceRoot[Function[{, } | ||
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 2], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 2], Times[-1, Power[, 2], 2], Times[-1, -1.5, 2], Times[-1, , -1.5, 2], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[-1, Plus[1, ], Plus[, -1.5, Times[-1, 2]], Plus[-2, Times[-4, ], Times[-2, Power[, 2]], Times[-3, -1.5], Times[-2, , -1.5], Times[2, 2], Times[2, , 2], Times[-1.5, 2], Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[6, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[, -1.5, Times[-1, 2]], Plus[1, , -1.5, Times[-1, 2]], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1, -1.5], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1, -1.5], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Power[Plus[Power[-1.5, 2], Times[-1, -1.5, 2]], -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 2], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 2], Times[-1, Power[, 2], 2], Times[-1, -1.5, 2], Times[-1, , -1.5, 2], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[-1, Plus[1, ], Plus[, -1.5, Times[-1, 2]], Plus[-2, Times[-4, ], Times[-2, Power[, 2]], Times[-3, -1.5], Times[-2, , -1.5], Times[2, 2], Times[2, , 2], Times[-1.5, 2], Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[6, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[, -1.5, Times[-1, 2]], Plus[1, , -1.5, Times[-1, 2]], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1, -1.5], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1, -1.5], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Power[Plus[Power[-1.5, 2], Times[-1, -1.5, 2]], -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E5 15.5.E5] | | | [https://dlmf.nist.gov/15.5.E5 15.5.E5] || <math qid="Q5022">\left(z\deriv{}{z}z\right)^{n}\left(z^{c-a-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-a}{n}z^{c-a+n-1}(1-z)^{a-n+b-c}\*\hyperF@{a-n}{b}{c}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(z\deriv{}{z}z\right)^{n}\left(z^{c-a-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-a}{n}z^{c-a+n-1}(1-z)^{a-n+b-c}\*\hyperF@{a-n}{b}{c}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z*diff(z, z))^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z)) = pochhammer(c - a, n)*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* hypergeom([a - n, b], [c], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z*D[z, z])^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[c - a, n]*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* Hypergeometric2F1[a - n, b, c, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [298 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9999999999999999, -5.551115123125783*^-17] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4330127018922193, 0.24999999999999992] | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4330127018922193, 0.24999999999999992] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E6 15.5.E6] | | | [https://dlmf.nist.gov/15.5.E6 15.5.E6] || <math qid="Q5023">\deriv[n]{}{z}\left((1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \frac{\Pochhammersym{c-a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+b-c-n}\*\hyperF@{a}{b}{c+n}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left((1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \frac{\Pochhammersym{c-a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+b-c-n}\*\hyperF@{a}{b}{c+n}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)]) = (pochhammer(c - a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + b - c - n)* hypergeom([a, b], [c + n], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}] == Divide[Pochhammer[c - a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a, b, c + n, z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 0.0], Times[Complex[-1.6799040046341822, -2.8501979384465357], DifferenceRoot[Function[{, } | ||
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 1], Times[2, Power[, 2], 1], Times[, -1.5, 1], Times[, -1.5, 1], Times[-1.5, -1.5, 1], Times[-1.5, 1], Times[, -1.5, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1,<syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 0.0], Times[Complex[1.2497428237239117, 10.604878809262228], DifferenceRoot[Function[{, } | Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 1], Times[2, Power[, 2], 1], Times[, -1.5, 1], Times[, -1.5, 1], Times[-1.5, -1.5, 1], Times[-1.5, 1], Times[, -1.5, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1,<syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 0.0], Times[Complex[1.2497428237239117, 10.604878809262228], DifferenceRoot[Function[{, } | ||
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 2], Times[2, Power[, 2], 2], Times[, -1.5, 2], Times[, -1.5, 2], Times[-1.5, -1.5, 2], Times[-1.5, 2], Times[, -1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[-1, Times[-1, ], Times[-1, -1.5], Times[-1, -1.5], -1.5, 2], Plus[Times[-1, ], Times[-1, Power[, 2]], Times[-1, -1.5], Times[-1, , -1.5], Times[, 2], Times[-1.5, 2], Times[5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[7, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[1, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Plus[2, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, Power[-1.5, -1], Power[Plus[1, -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], -1], 2, Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 2], Times[2, Power[, 2], 2], Times[, -1.5, 2], Times[, -1.5, 2], Times[-1.5, -1.5, 2], Times[-1.5, 2], Times[, -1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[-1, Times[-1, ], Times[-1, -1.5], Times[-1, -1.5], -1.5, 2], Plus[Times[-1, ], Times[-1, Power[, 2]], Times[-1, -1.5], Times[-1, , -1.5], Times[, 2], Times[-1.5, 2], Times[5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[7, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[1, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Plus[2, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, Power[-1.5, -1], Power[Plus[1, -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], -1], 2, Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E7 15.5.E7] | | | [https://dlmf.nist.gov/15.5.E7 15.5.E7] || <math qid="Q5024">\left((1-z)\deriv{}{z}(1-z)\right)^{n}\left((1-z)^{a-1}\hyperF@{a}{b}{c}{z}\right) = (-1)^{n}\frac{\Pochhammersym{a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+n-1}\*\hyperF@{a+n}{b}{c+n}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left((1-z)\deriv{}{z}(1-z)\right)^{n}\left((1-z)^{a-1}\hyperF@{a}{b}{c}{z}\right) = (-1)^{n}\frac{\Pochhammersym{a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+n-1}\*\hyperF@{a+n}{b}{c+n}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((1 - z)*diff(1 - z, z))^(n)*((1 - z)^(a - 1)* hypergeom([a, b], [c], z)) = (- 1)^(n)*(pochhammer(a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + n - 1)* hypergeom([a + n, b], [c + n], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((1 - z)*D[1 - z, z])^(n)*((1 - z)^(a - 1)* Hypergeometric2F1[a, b, c, z]) == (- 1)^(n)*Divide[Pochhammer[a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c + n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.9999999999999999, 5.551115123125783*^-17] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5669872981077805, -0.24999999999999994] | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5669872981077805, -0.24999999999999994] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E8 15.5.E8] | | | [https://dlmf.nist.gov/15.5.E8 15.5.E8] || <math qid="Q5025">\left((1-z)\deriv{}{z}(1-z)\right)^{n}\left(z^{c-1}(1-z)^{b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{b-c+n}\*\hyperF@{a-n}{b}{c-n}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left((1-z)\deriv{}{z}(1-z)\right)^{n}\left(z^{c-1}(1-z)^{b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{b-c+n}\*\hyperF@{a-n}{b}{c-n}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((1 - z)*diff(1 - z, z))^(n)*((z)^(c - 1)*(1 - z)^(b - c)* hypergeom([a, b], [c], z)) = pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(b - c + n)* hypergeom([a - n, b], [c - n], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((1 - z)*D[1 - z, z])^(n)*((z)^(c - 1)*(1 - z)^(b - c)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(b - c + n)* Hypergeometric2F1[a - n, b, c - n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [299 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-7.039508221073909, -1.0669744439111815] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[28.125871703124346, -23.36453828137185] | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[28.125871703124346, -23.36453828137185] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E9 15.5.E9] | | | [https://dlmf.nist.gov/15.5.E9 15.5.E9] || <math qid="Q5026">\deriv[n]{}{z}\left(z^{c-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{a+b-c-n}\*\hyperF@{a-n}{b-n}{c-n}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(z^{c-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{a+b-c-n}\*\hyperF@{a-n}{b-n}{c-n}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((z)^(c - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)]) = pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* hypergeom([a - n, b - n], [c - n], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(z)^(c - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}] == Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a - n, b - n, c - n, z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-7.320508075688771, -27.32050807568877], DifferenceRoot[Function[{, } | ||
Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Tim<syntaxhighlight lang=mathematica>Result: Plus[Complex[139.99999999999997, 139.99999999999997], Times[2.0, DifferenceRoot[Function[{, } | Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Tim<syntaxhighlight lang=mathematica>Result: Plus[Complex[139.99999999999997, 139.99999999999997], Times[2.0, DifferenceRoot[Function[{, } | ||
Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-1, -1.5]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[1], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-2, -1.5]], Plus[Times[Power[Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], -1], Plus[1, Times[-1, -1.5], Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Times[-1.5, -1.5, Power[-1.5, -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][2.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-1, -1.5]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[1], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-2, -1.5]], Plus[Times[Power[Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], -1], Plus[1, Times[-1, -1.5], Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Times[-1.5, -1.5, Power[-1.5, -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][2.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E10 15.5.E10] | | | [https://dlmf.nist.gov/15.5.E10 15.5.E10] || <math qid="Q5027">\left(z\deriv{}{z}z\right)^{n} = z^{n}\deriv[n]{}{z}z^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(z\deriv{}{z}z\right)^{n} = z^{n}\deriv[n]{}{z}z^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z*diff(z, z))^(n) = (z)^(n)* diff((z)^(n), [z$(n)])</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z*D[z, z])^(n) == (z)^(n)* D[(z)^(n), {z, n}]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1616869430e-8-5.000000005*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.000000005+.1616869430e-8*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.000000005+.1616869430e-8*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -0.625] | Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -0.625] | ||
Line 52: | Line 52: | ||
Test Values: {Rule[n, 3], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 3], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E11 15.5.E11] | | | [https://dlmf.nist.gov/15.5.E11 15.5.E11] || <math qid="Q5028">(c-a)\hyperF@{a-1}{b}{c}{z}+\left(2a-c+(b-a)z\right)\hyperF@{a}{b}{c}{z}+a(z-1)\hyperF@{a+1}{b}{c}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(c-a)\hyperF@{a-1}{b}{c}{z}+\left(2a-c+(b-a)z\right)\hyperF@{a}{b}{c}{z}+a(z-1)\hyperF@{a+1}{b}{c}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(c - a)*hypergeom([a - 1, b], [c], z)+(2*a - c +(b - a)*z)*hypergeom([a, b], [c], z)+ a*(z - 1)*hypergeom([a + 1, b], [c], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(c - a)*Hypergeometric2F1[a - 1, b, c, z]+(2*a - c +(b - a)*z)*Hypergeometric2F1[a, b, c, z]+ a*(z - 1)*Hypergeometric2F1[a + 1, b, c, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E12 15.5.E12] | | | [https://dlmf.nist.gov/15.5.E12 15.5.E12] || <math qid="Q5029">(b-a)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-b\hyperF@{a}{b+1}{c}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(b-a)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-b\hyperF@{a}{b+1}{c}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(b - a)*hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)- b*hypergeom([a, b + 1], [c], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(b - a)*Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]- b*Hypergeometric2F1[a, b + 1, c, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E13 15.5.E13] | | | [https://dlmf.nist.gov/15.5.E13 15.5.E13] || <math qid="Q5030">(c-a-b)\hyperF@{a}{b}{c}{z}+a(1-z)\hyperF@{a+1}{b}{c}{z}-(c-b)\hyperF@{a}{b-1}{c}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(c-a-b)\hyperF@{a}{b}{c}{z}+a(1-z)\hyperF@{a+1}{b}{c}{z}-(c-b)\hyperF@{a}{b-1}{c}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(c - a - b)*hypergeom([a, b], [c], z)+ a*(1 - z)*hypergeom([a + 1, b], [c], z)-(c - b)*hypergeom([a, b - 1], [c], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(c - a - b)*Hypergeometric2F1[a, b, c, z]+ a*(1 - z)*Hypergeometric2F1[a + 1, b, c, z]-(c - b)*Hypergeometric2F1[a, b - 1, c, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [49 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E14 15.5.E14] | | | [https://dlmf.nist.gov/15.5.E14 15.5.E14] || <math qid="Q5031">c\left(a+(b-c)z\right)\hyperF@{a}{b}{c}{z}-ac(1-z)\hyperF@{a+1}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c\left(a+(b-c)z\right)\hyperF@{a}{b}{c}{z}-ac(1-z)\hyperF@{a+1}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>c*(a +(b - c)*z)*hypergeom([a, b], [c], z)- a*c*(1 - z)*hypergeom([a + 1, b], [c], z)+(c - a)*(c - b)*z*hypergeom([a, b], [c + 1], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>c*(a +(b - c)*z)*Hypergeometric2F1[a, b, c, z]- a*c*(1 - z)*Hypergeometric2F1[a + 1, b, c, z]+(c - a)*(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [49 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E15 15.5.E15] | | | [https://dlmf.nist.gov/15.5.E15 15.5.E15] || <math qid="Q5032">(c-a-1)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-(c-1)\hyperF@{a}{b}{c-1}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(c-a-1)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-(c-1)\hyperF@{a}{b}{c-1}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(c - a - 1)*hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)-(c - 1)*hypergeom([a, b], [c - 1], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(c - a - 1)*Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]-(c - 1)*Hypergeometric2F1[a, b, c - 1, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E16 15.5.E16] | | | [https://dlmf.nist.gov/15.5.E16 15.5.E16] || <math qid="Q5033">c(1-z)\hyperF@{a}{b}{c}{z}-c\hyperF@{a-1}{b}{c}{z}+(c-b)z\hyperF@{a}{b}{c+1}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c(1-z)\hyperF@{a}{b}{c}{z}-c\hyperF@{a-1}{b}{c}{z}+(c-b)z\hyperF@{a}{b}{c+1}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>c*(1 - z)*hypergeom([a, b], [c], z)- c*hypergeom([a - 1, b], [c], z)+(c - b)*z*hypergeom([a, b], [c + 1], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>c*(1 - z)*Hypergeometric2F1[a, b, c, z]- c*Hypergeometric2F1[a - 1, b, c, z]+(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [49 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E17 15.5.E17] | | | [https://dlmf.nist.gov/15.5.E17 15.5.E17] || <math qid="Q5034">\left(a-1+(b+1-c)z\right)\hyperF@{a}{b}{c}{z}+(c-a)\hyperF@{a-1}{b}{c}{z}-(c-1)(1-z)\hyperF@{a}{b}{c-1}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(a-1+(b+1-c)z\right)\hyperF@{a}{b}{c}{z}+(c-a)\hyperF@{a-1}{b}{c}{z}-(c-1)(1-z)\hyperF@{a}{b}{c-1}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(a - 1 +(b + 1 - c)*z)*hypergeom([a, b], [c], z)+(c - a)*hypergeom([a - 1, b], [c], z)-(c - 1)*(1 - z)*hypergeom([a, b], [c - 1], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(a - 1 +(b + 1 - c)*z)*Hypergeometric2F1[a, b, c, z]+(c - a)*Hypergeometric2F1[a - 1, b, c, z]-(c - 1)*(1 - z)*Hypergeometric2F1[a, b, c - 1, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E18 15.5.E18] | | | [https://dlmf.nist.gov/15.5.E18 15.5.E18] || <math qid="Q5035">c(c-1)(z-1)\hyperF@{a}{b}{c-1}{z}+{c\left(c-1-(2c-a-b-1)z\right)}\hyperF@{a}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c(c-1)(z-1)\hyperF@{a}{b}{c-1}{z}+{c\left(c-1-(2c-a-b-1)z\right)}\hyperF@{a}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>c*(c - 1)*(z - 1)*hypergeom([a, b], [c - 1], z)+c*(c - 1 -(2*c - a - b - 1)*z)*hypergeom([a, b], [c], z)+(c - a)*(c - b)*z*hypergeom([a, b], [c + 1], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>c*(c - 1)*(z - 1)*Hypergeometric2F1[a, b, c - 1, z]+c*(c - 1 -(2*c - a - b - 1)*z)*Hypergeometric2F1[a, b, c, z]+(c - a)*(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [49 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E19 15.5.E19] | | | [https://dlmf.nist.gov/15.5.E19 15.5.E19] || <math qid="Q5036">{z(1-z)(a+1)(b+1)}\hyperF@{a+2}{b+2}{c+2}{z}+{(c-(a+b+1)z)(c+1)}\hyperF@{a+1}{b+1}{c+1}{z}-{c(c+1)}\hyperF@{a}{b}{c}{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>{z(1-z)(a+1)(b+1)}\hyperF@{a+2}{b+2}{c+2}{z}+{(c-(a+b+1)z)(c+1)}\hyperF@{a+1}{b+1}{c+1}{z}-{c(c+1)}\hyperF@{a}{b}{c}{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z*(1 - z)*(a + 1)*(b + 1)*hypergeom([a + 2, b + 2], [c + 2], z)+(c -(a + b + 1)*z)*(c + 1)*hypergeom([a + 1, b + 1], [c + 1], z)-c*(c + 1)*hypergeom([a, b], [c], z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>z*(1 - z)*(a + 1)*(b + 1)*Hypergeometric2F1[a + 2, b + 2, c + 2, z]+(c -(a + b + 1)*z)*(c + 1)*Hypergeometric2F1[a + 1, b + 1, c + 1, z]-c*(c + 1)*Hypergeometric2F1[a, b, c, z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E20 15.5.E20] | | | [https://dlmf.nist.gov/15.5.E20 15.5.E20] || <math qid="Q5037">z(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z*(1 - z)*(diff(hypergeom([a, b], [c], z), z)) = (c - a)*hypergeom([a - 1, b], [c], z)+(a - c + b*z)*hypergeom([a, b], [c], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z]) == (c - a)*Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)*Hypergeometric2F1[a, b, c, z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E20 15.5.E20] | | | [https://dlmf.nist.gov/15.5.E20 15.5.E20] || <math qid="Q5037">(c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z} = (c-b)\hyperF@{a}{b-1}{c}{z}+(b-c+az)\hyperF@{a}{b}{c}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z} = (c-b)\hyperF@{a}{b-1}{c}{z}+(b-c+az)\hyperF@{a}{b}{c}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(c - a)*hypergeom([a - 1, b], [c], z)+(a - c + b*z)*hypergeom([a, b], [c], z) = (c - b)*hypergeom([a, b - 1], [c], z)+(b - c + a*z)*hypergeom([a, b], [c], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(c - a)*Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)*Hypergeometric2F1[a, b, c, z] == (c - b)*Hypergeometric2F1[a, b - 1, c, z]+(b - c + a*z)*Hypergeometric2F1[a, b, c, z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [49 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.5.E21 15.5.E21] | | | [https://dlmf.nist.gov/15.5.E21 15.5.E21] || <math qid="Q5038">c(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)(c-b)\hyperF@{a}{b}{c+1}{z}+c(a+b-c)\hyperF@{a}{b}{c}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)(c-b)\hyperF@{a}{b}{c+1}{z}+c(a+b-c)\hyperF@{a}{b}{c}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>c*(1 - z)*(diff(hypergeom([a, b], [c], z), z)) = (c - a)*(c - b)*hypergeom([a, b], [c + 1], z)+ c*(a + b - c)*hypergeom([a, b], [c], z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>c*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z]) == (c - a)*(c - b)*Hypergeometric2F1[a, b, c + 1, z]+ c*(a + b - c)*Hypergeometric2F1[a, b, c, z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [49 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:39, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
15.5.E1 | \deriv{}{z}\hyperF@{a}{b}{c}{z} = \frac{ab}{c}\hyperF@{a+1}{b+1}{c+1}{z} |
|
diff(hypergeom([a, b], [c], z), z) = (a*b)/(c)*hypergeom([a + 1, b + 1], [c + 1], z)
|
D[Hypergeometric2F1[a, b, c, z], z] == Divide[a*b,c]*Hypergeometric2F1[a + 1, b + 1, c + 1, z]
|
Successful | Successful | - | Successful [Tested: 300] |
15.5.E2 | \deriv[n]{}{z}\hyperF@{a}{b}{c}{z} = \frac{\Pochhammersym{a}{n}\Pochhammersym{b}{n}}{\Pochhammersym{c}{n}}\*\hyperF@{a+n}{b+n}{c+n}{z} |
|
diff(hypergeom([a, b], [c], z), [z$(n)]) = (pochhammer(a, n)*pochhammer(b, n))/(pochhammer(c, n))* hypergeom([a + n, b + n], [c + n], z)
|
D[Hypergeometric2F1[a, b, c, z], {z, n}] == Divide[Pochhammer[a, n]*Pochhammer[b, n],Pochhammer[c, n]]* Hypergeometric2F1[a + n, b + n, c + n, z]
|
Successful | Successful | - | Successful [Tested: 300] |
15.5.E3 | \left(z\deriv{}{z}z\right)^{n}\left(z^{a-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{a}{n}z^{a+n-1}\hyperF@{a+n}{b}{c}{z} |
|
(z*diff(z, z))^(n)*((z)^(a - 1)* hypergeom([a, b], [c], z)) = pochhammer(a, n)*(z)^(a + n - 1)* hypergeom([a + n, b], [c], z)
|
(z*D[z, z])^(n)*((z)^(a - 1)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[a, n]*(z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c, z]
|
Failure | Failure | Manual Skip! | Failed [298 / 300]
Result: Complex[2.047155237894918, -4.15915132240068]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.9084280791008837, -0.4608118321937779]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.5.E4 | \deriv[n]{}{z}\left(z^{c-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}\hyperF@{a}{b}{c-n}{z} |
|
diff((z)^(c - 1)* hypergeom([a, b], [c], z), [z$(n)]) = pochhammer(c - n, n)*(z)^(c - n - 1)* hypergeom([a, b], [c - n], z)
|
D[(z)^(c - 1)* Hypergeometric2F1[a, b, c, z], {z, n}] == Pochhammer[c - n, n]*(z)^(c - n - 1)* Hypergeometric2F1[a, b, c - n, z]
|
Failure | Aborted | Skipped - Because timed out | Failed [300 / 300]
Result: Plus[Complex[-10.313412337740687, -15.40985641083086], Times[Complex[-2.9282032302755074, -10.928203230275509], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 1], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 1], Times[-1, Power[, 2], 1], Times[-1, -1.5, 1], Times[-1, , -1.5, 1], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, <syntaxhighlight lang=mathematica>Result: Plus[Complex[123.08315470740952, 79.99762770469566], Times[Complex[-31.999999999999993, -32.0], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 2], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 2], Times[-1, Power[, 2], 2], Times[-1, -1.5, 2], Times[-1, , -1.5, 2], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[-1, Plus[1, ], Plus[, -1.5, Times[-1, 2]], Plus[-2, Times[-4, ], Times[-2, Power[, 2]], Times[-3, -1.5], Times[-2, , -1.5], Times[2, 2], Times[2, , 2], Times[-1.5, 2], Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[6, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[, -1.5, Times[-1, 2]], Plus[1, , -1.5, Times[-1, 2]], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1, -1.5], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1, -1.5], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Power[Plus[Power[-1.5, 2], Times[-1, -1.5, 2]], -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.5.E5 | \left(z\deriv{}{z}z\right)^{n}\left(z^{c-a-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-a}{n}z^{c-a+n-1}(1-z)^{a-n+b-c}\*\hyperF@{a-n}{b}{c}{z} |
|
(z*diff(z, z))^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z)) = pochhammer(c - a, n)*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* hypergeom([a - n, b], [c], z)
|
(z*D[z, z])^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[c - a, n]*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* Hypergeometric2F1[a - n, b, c, z]
|
Failure | Failure | Skipped - Because timed out | Failed [298 / 300]
Result: Complex[0.9999999999999999, -5.551115123125783*^-17]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.4330127018922193, 0.24999999999999992]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.5.E6 | \deriv[n]{}{z}\left((1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \frac{\Pochhammersym{c-a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+b-c-n}\*\hyperF@{a}{b}{c+n}{z} |
|
diff((1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)]) = (pochhammer(c - a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + b - c - n)* hypergeom([a, b], [c + n], z)
|
D[(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}] == Divide[Pochhammer[c - a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a, b, c + n, z]
|
Failure | Aborted | Skipped - Because timed out | Failed [300 / 300]
Result: Plus[Complex[0.0, 0.0], Times[Complex[-1.6799040046341822, -2.8501979384465357], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 1], Times[2, Power[, 2], 1], Times[, -1.5, 1], Times[, -1.5, 1], Times[-1.5, -1.5, 1], Times[-1.5, 1], Times[, -1.5, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1,<syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 0.0], Times[Complex[1.2497428237239117, 10.604878809262228], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 2], Times[2, Power[, 2], 2], Times[, -1.5, 2], Times[, -1.5, 2], Times[-1.5, -1.5, 2], Times[-1.5, 2], Times[, -1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[-1, Times[-1, ], Times[-1, -1.5], Times[-1, -1.5], -1.5, 2], Plus[Times[-1, ], Times[-1, Power[, 2]], Times[-1, -1.5], Times[-1, , -1.5], Times[, 2], Times[-1.5, 2], Times[5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[7, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[1, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Plus[2, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, Power[-1.5, -1], Power[Plus[1, -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], -1], 2, Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.5.E7 | \left((1-z)\deriv{}{z}(1-z)\right)^{n}\left((1-z)^{a-1}\hyperF@{a}{b}{c}{z}\right) = (-1)^{n}\frac{\Pochhammersym{a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+n-1}\*\hyperF@{a+n}{b}{c+n}{z} |
|
((1 - z)*diff(1 - z, z))^(n)*((1 - z)^(a - 1)* hypergeom([a, b], [c], z)) = (- 1)^(n)*(pochhammer(a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + n - 1)* hypergeom([a + n, b], [c + n], z)
|
((1 - z)*D[1 - z, z])^(n)*((1 - z)^(a - 1)* Hypergeometric2F1[a, b, c, z]) == (- 1)^(n)*Divide[Pochhammer[a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c + n, z]
|
Failure | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Complex[-0.9999999999999999, 5.551115123125783*^-17]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.5669872981077805, -0.24999999999999994]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.5.E8 | \left((1-z)\deriv{}{z}(1-z)\right)^{n}\left(z^{c-1}(1-z)^{b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{b-c+n}\*\hyperF@{a-n}{b}{c-n}{z} |
|
((1 - z)*diff(1 - z, z))^(n)*((z)^(c - 1)*(1 - z)^(b - c)* hypergeom([a, b], [c], z)) = pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(b - c + n)* hypergeom([a - n, b], [c - n], z)
|
((1 - z)*D[1 - z, z])^(n)*((z)^(c - 1)*(1 - z)^(b - c)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(b - c + n)* Hypergeometric2F1[a - n, b, c - n, z]
|
Failure | Failure | Skipped - Because timed out | Failed [299 / 300]
Result: Complex[-7.039508221073909, -1.0669744439111815]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[28.125871703124346, -23.36453828137185]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.5.E9 | \deriv[n]{}{z}\left(z^{c-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{a+b-c-n}\*\hyperF@{a-n}{b-n}{c-n}{z} |
|
diff((z)^(c - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)]) = pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* hypergeom([a - n, b - n], [c - n], z)
|
D[(z)^(c - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}] == Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a - n, b - n, c - n, z]
|
Failure | Aborted | Skipped - Because timed out | Failed [300 / 300]
Result: Plus[Complex[-7.320508075688771, -27.32050807568877], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Tim<syntaxhighlight lang=mathematica>Result: Plus[Complex[139.99999999999997, 139.99999999999997], Times[2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-1, -1.5]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[1], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-2, -1.5]], Plus[Times[Power[Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], -1], Plus[1, Times[-1, -1.5], Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Times[-1.5, -1.5, Power[-1.5, -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][2.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.5.E10 | \left(z\deriv{}{z}z\right)^{n} = z^{n}\deriv[n]{}{z}z^{n} |
|
(z*diff(z, z))^(n) = (z)^(n)* diff((z)^(n), [z$(n)])
|
(z*D[z, z])^(n) == (z)^(n)* D[(z)^(n), {z, n}]
|
Failure | Failure | Failed [7 / 7] Result: -.1616869430e-8-5.000000005*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 3}
Result: -5.000000005+.1616869430e-8*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.0, -0.625]
Test Values: {Rule[n, 3], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: -0.625
Test Values: {Rule[n, 3], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.5.E11 | (c-a)\hyperF@{a-1}{b}{c}{z}+\left(2a-c+(b-a)z\right)\hyperF@{a}{b}{c}{z}+a(z-1)\hyperF@{a+1}{b}{c}{z} = 0 |
|
(c - a)*hypergeom([a - 1, b], [c], z)+(2*a - c +(b - a)*z)*hypergeom([a, b], [c], z)+ a*(z - 1)*hypergeom([a + 1, b], [c], z) = 0
|
(c - a)*Hypergeometric2F1[a - 1, b, c, z]+(2*a - c +(b - a)*z)*Hypergeometric2F1[a, b, c, z]+ a*(z - 1)*Hypergeometric2F1[a + 1, b, c, z] == 0
|
Successful | Successful | - | Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E12 | (b-a)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-b\hyperF@{a}{b+1}{c}{z} = 0 |
|
(b - a)*hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)- b*hypergeom([a, b + 1], [c], z) = 0
|
(b - a)*Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]- b*Hypergeometric2F1[a, b + 1, c, z] == 0
|
Successful | Successful | - | Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E13 | (c-a-b)\hyperF@{a}{b}{c}{z}+a(1-z)\hyperF@{a+1}{b}{c}{z}-(c-b)\hyperF@{a}{b-1}{c}{z} = 0 |
|
(c - a - b)*hypergeom([a, b], [c], z)+ a*(1 - z)*hypergeom([a + 1, b], [c], z)-(c - b)*hypergeom([a, b - 1], [c], z) = 0
|
(c - a - b)*Hypergeometric2F1[a, b, c, z]+ a*(1 - z)*Hypergeometric2F1[a + 1, b, c, z]-(c - b)*Hypergeometric2F1[a, b - 1, c, z] == 0
|
Successful | Successful | - | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E14 | c\left(a+(b-c)z\right)\hyperF@{a}{b}{c}{z}-ac(1-z)\hyperF@{a+1}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0 |
|
c*(a +(b - c)*z)*hypergeom([a, b], [c], z)- a*c*(1 - z)*hypergeom([a + 1, b], [c], z)+(c - a)*(c - b)*z*hypergeom([a, b], [c + 1], z) = 0
|
c*(a +(b - c)*z)*Hypergeometric2F1[a, b, c, z]- a*c*(1 - z)*Hypergeometric2F1[a + 1, b, c, z]+(c - a)*(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0
|
Successful | Successful | - | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E15 | (c-a-1)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-(c-1)\hyperF@{a}{b}{c-1}{z} = 0 |
|
(c - a - 1)*hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)-(c - 1)*hypergeom([a, b], [c - 1], z) = 0
|
(c - a - 1)*Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]-(c - 1)*Hypergeometric2F1[a, b, c - 1, z] == 0
|
Successful | Successful | - | Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E16 | c(1-z)\hyperF@{a}{b}{c}{z}-c\hyperF@{a-1}{b}{c}{z}+(c-b)z\hyperF@{a}{b}{c+1}{z} = 0 |
|
c*(1 - z)*hypergeom([a, b], [c], z)- c*hypergeom([a - 1, b], [c], z)+(c - b)*z*hypergeom([a, b], [c + 1], z) = 0
|
c*(1 - z)*Hypergeometric2F1[a, b, c, z]- c*Hypergeometric2F1[a - 1, b, c, z]+(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0
|
Successful | Successful | - | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E17 | \left(a-1+(b+1-c)z\right)\hyperF@{a}{b}{c}{z}+(c-a)\hyperF@{a-1}{b}{c}{z}-(c-1)(1-z)\hyperF@{a}{b}{c-1}{z} = 0 |
|
(a - 1 +(b + 1 - c)*z)*hypergeom([a, b], [c], z)+(c - a)*hypergeom([a - 1, b], [c], z)-(c - 1)*(1 - z)*hypergeom([a, b], [c - 1], z) = 0
|
(a - 1 +(b + 1 - c)*z)*Hypergeometric2F1[a, b, c, z]+(c - a)*Hypergeometric2F1[a - 1, b, c, z]-(c - 1)*(1 - z)*Hypergeometric2F1[a, b, c - 1, z] == 0
|
Successful | Successful | - | Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E18 | c(c-1)(z-1)\hyperF@{a}{b}{c-1}{z}+{c\left(c-1-(2c-a-b-1)z\right)}\hyperF@{a}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0 |
|
c*(c - 1)*(z - 1)*hypergeom([a, b], [c - 1], z)+c*(c - 1 -(2*c - a - b - 1)*z)*hypergeom([a, b], [c], z)+(c - a)*(c - b)*z*hypergeom([a, b], [c + 1], z) = 0
|
c*(c - 1)*(z - 1)*Hypergeometric2F1[a, b, c - 1, z]+c*(c - 1 -(2*c - a - b - 1)*z)*Hypergeometric2F1[a, b, c, z]+(c - a)*(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0
|
Successful | Successful | - | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E19 | {z(1-z)(a+1)(b+1)}\hyperF@{a+2}{b+2}{c+2}{z}+{(c-(a+b+1)z)(c+1)}\hyperF@{a+1}{b+1}{c+1}{z}-{c(c+1)}\hyperF@{a}{b}{c}{z} = 0 |
|
z*(1 - z)*(a + 1)*(b + 1)*hypergeom([a + 2, b + 2], [c + 2], z)+(c -(a + b + 1)*z)*(c + 1)*hypergeom([a + 1, b + 1], [c + 1], z)-c*(c + 1)*hypergeom([a, b], [c], z) = 0
|
z*(1 - z)*(a + 1)*(b + 1)*Hypergeometric2F1[a + 2, b + 2, c + 2, z]+(c -(a + b + 1)*z)*(c + 1)*Hypergeometric2F1[a + 1, b + 1, c + 1, z]-c*(c + 1)*Hypergeometric2F1[a, b, c, z] == 0
|
Successful | Successful | - | Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E20 | z(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z} |
|
z*(1 - z)*(diff(hypergeom([a, b], [c], z), z)) = (c - a)*hypergeom([a - 1, b], [c], z)+(a - c + b*z)*hypergeom([a, b], [c], z)
|
z*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z]) == (c - a)*Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)*Hypergeometric2F1[a, b, c, z]
|
Successful | Successful | - | Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E20 | (c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z} = (c-b)\hyperF@{a}{b-1}{c}{z}+(b-c+az)\hyperF@{a}{b}{c}{z} |
|
(c - a)*hypergeom([a - 1, b], [c], z)+(a - c + b*z)*hypergeom([a, b], [c], z) = (c - b)*hypergeom([a, b - 1], [c], z)+(b - c + a*z)*hypergeom([a, b], [c], z)
|
(c - a)*Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)*Hypergeometric2F1[a, b, c, z] == (c - b)*Hypergeometric2F1[a, b - 1, c, z]+(b - c + a*z)*Hypergeometric2F1[a, b, c, z]
|
Successful | Successful | - | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.5.E21 | c(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)(c-b)\hyperF@{a}{b}{c+1}{z}+c(a+b-c)\hyperF@{a}{b}{c}{z} |
|
c*(1 - z)*(diff(hypergeom([a, b], [c], z), z)) = (c - a)*(c - b)*hypergeom([a, b], [c + 1], z)+ c*(a + b - c)*hypergeom([a, b], [c], z) |
c*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z]) == (c - a)*(c - b)*Hypergeometric2F1[a, b, c + 1, z]+ c*(a + b - c)*Hypergeometric2F1[a, b, c, z] |
Successful | Successful | - | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |