12.2: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/12.2.E2 12.2.E2] || [[Item:Q4087|<math>\deriv[2]{w}{z}-\left(\tfrac{1}{4}z^{2}+a\right)w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}-\left(\tfrac{1}{4}z^{2}+a\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])-((1)/(4)*(z)^(2)+ a)*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]-(Divide[1,4]*(z)^(2)+ a)*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+.4999999999*I
| [https://dlmf.nist.gov/12.2.E2 12.2.E2] || <math qid="Q4087">\deriv[2]{w}{z}-\left(\tfrac{1}{4}z^{2}+a\right)w = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}-\left(\tfrac{1}{4}z^{2}+a\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])-((1)/(4)*(z)^(2)+ a)*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]-(Divide[1,4]*(z)^(2)+ a)*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+.4999999999*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+1.000000000*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+1.000000000*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.2990381056766582, 0.4999999999999999]
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.2990381056766582, 0.4999999999999999]
Line 20: Line 20:
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E3 12.2.E3] || [[Item:Q4088|<math>\deriv[2]{w}{z}+\left(\tfrac{1}{4}z^{2}-a\right)w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\left(\tfrac{1}{4}z^{2}-a\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+((1)/(4)*(z)^(2)- a)*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+(Divide[1,4]*(z)^(2)- a)*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+1.000000000*I
| [https://dlmf.nist.gov/12.2.E3 12.2.E3] || <math qid="Q4088">\deriv[2]{w}{z}+\left(\tfrac{1}{4}z^{2}-a\right)w = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\left(\tfrac{1}{4}z^{2}-a\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+((1)/(4)*(z)^(2)- a)*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+(Divide[1,4]*(z)^(2)- a)*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+1.000000000*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.4999999999*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.4999999999*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.299038105676658, 0.9999999999999999]
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.299038105676658, 0.9999999999999999]
Line 26: Line 26:
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E4 12.2.E4] || [[Item:Q4089|<math>\deriv[2]{w}{z}+\left(\nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\left(\nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+(nu +(1)/(2)-(1)/(4)*(z)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+(\[Nu]+Divide[1,2]-Divide[1,4]*(z)^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9330127024+.8660254039*I
| [https://dlmf.nist.gov/12.2.E4 12.2.E4] || <math qid="Q4089">\deriv[2]{w}{z}+\left(\nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\left(\nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+(nu +(1)/(2)-(1)/(4)*(z)^(2))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+(\[Nu]+Divide[1,2]-Divide[1,4]*(z)^(2))*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9330127024+.8660254039*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9330127024+1.366025404*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9330127024+1.366025404*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [296 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9330127018922196, 0.8660254037844386]
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [296 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9330127018922196, 0.8660254037844386]
Line 32: Line 32:
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E5 12.2.E5] || [[Item:Q4090|<math>\WhittakerparaD{\nu}@{z} = \paraU@{-\tfrac{1}{2}-\nu}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerparaD{\nu}@{z} = \paraU@{-\tfrac{1}{2}-\nu}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>CylinderD(nu, z) = CylinderU(-(1)/(2)- nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[\[Nu], z] == ParabolicCylinderD[- 1/2 -(-Divide[1,2]- \[Nu]), z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/12.2.E5 12.2.E5] || <math qid="Q4090">\WhittakerparaD{\nu}@{z} = \paraU@{-\tfrac{1}{2}-\nu}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerparaD{\nu}@{z} = \paraU@{-\tfrac{1}{2}-\nu}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>CylinderD(nu, z) = CylinderU(-(1)/(2)- nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[\[Nu], z] == ParabolicCylinderD[- 1/2 -(-Divide[1,2]- \[Nu]), z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E6 12.2.E6] || [[Item:Q4091|<math>\paraU@{a}{0} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}a+\frac{1}{4}}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{0} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}a+\frac{1}{4}}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{3}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, 0) = (sqrt(Pi))/((2)^((1)/(2)*a +(1)/(4))* GAMMA((3)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), 0] == Divide[Sqrt[Pi],(2)^(Divide[1,2]*a +Divide[1,4])* Gamma[Divide[3,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 4]
| [https://dlmf.nist.gov/12.2.E6 12.2.E6] || <math qid="Q4091">\paraU@{a}{0} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}a+\frac{1}{4}}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{0} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}a+\frac{1}{4}}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{3}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, 0) = (sqrt(Pi))/((2)^((1)/(2)*a +(1)/(4))* GAMMA((3)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), 0] == Divide[Sqrt[Pi],(2)^(Divide[1,2]*a +Divide[1,4])* Gamma[Divide[3,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 4]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E7 12.2.E7] || [[Item:Q4092|<math>\paraU'@{a}{0} = -\frac{\sqrt{\pi}}{2^{\frac{1}{2}a-\frac{1}{4}}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU'@{a}{0} = -\frac{\sqrt{\pi}}{2^{\frac{1}{2}a-\frac{1}{4}}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>subs( temp=0, diff( CylinderU(a, temp), temp$(1) ) ) = -(sqrt(Pi))/((2)^((1)/(2)*a -(1)/(4))* GAMMA((1)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[ParabolicCylinderD[- 1/2 -(a), temp], {temp, 1}]/.temp-> 0) == -Divide[Sqrt[Pi],(2)^(Divide[1,2]*a -Divide[1,4])* Gamma[Divide[1,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/12.2.E7 12.2.E7] || <math qid="Q4092">\paraU'@{a}{0} = -\frac{\sqrt{\pi}}{2^{\frac{1}{2}a-\frac{1}{4}}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU'@{a}{0} = -\frac{\sqrt{\pi}}{2^{\frac{1}{2}a-\frac{1}{4}}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>subs( temp=0, diff( CylinderU(a, temp), temp$(1) ) ) = -(sqrt(Pi))/((2)^((1)/(2)*a -(1)/(4))* GAMMA((1)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[ParabolicCylinderD[- 1/2 -(a), temp], {temp, 1}]/.temp-> 0) == -Divide[Sqrt[Pi],(2)^(Divide[1,2]*a -Divide[1,4])* Gamma[Divide[1,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E8 12.2.E8] || [[Item:Q4093|<math>\paraV@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{1}{4}}}{\left(\EulerGamma@{\frac{3}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{1}{4}}}{\left(\EulerGamma@{\frac{3}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{3}{4}-\frac{1}{2}a)} > 0, \realpart@@{(\frac{1}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, 0) = (Pi*(2)^((1)/(2)*a +(1)/(4)))/((GAMMA((3)/(4)-(1)/(2)*a))^(2)* GAMMA((1)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, 0] + ParabolicCylinderD[-(a) - 1/2, -(0)]) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[1,4]),(Gamma[Divide[3,4]-Divide[1,2]*a])^(2)* Gamma[Divide[1,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.7978845608028653, Times[0.7978845608028655, GAMMA[1.0]]]
| [https://dlmf.nist.gov/12.2.E8 12.2.E8] || <math qid="Q4093">\paraV@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{1}{4}}}{\left(\EulerGamma@{\frac{3}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{1}{4}}}{\left(\EulerGamma@{\frac{3}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{3}{4}-\frac{1}{2}a)} > 0, \realpart@@{(\frac{1}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, 0) = (Pi*(2)^((1)/(2)*a +(1)/(4)))/((GAMMA((3)/(4)-(1)/(2)*a))^(2)* GAMMA((1)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, 0] + ParabolicCylinderD[-(a) - 1/2, -(0)]) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[1,4]),(Gamma[Divide[3,4]-Divide[1,2]*a])^(2)* Gamma[Divide[1,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.7978845608028653, Times[0.7978845608028655, GAMMA[1.0]]]
Test Values: {Rule[a, 0.5]}</syntaxhighlight><br></div></div>
Test Values: {Rule[a, 0.5]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E9 12.2.E9] || [[Item:Q4094|<math>\paraV'@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{3}{4}}}{\left(\EulerGamma@{\frac{1}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV'@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{3}{4}}}{\left(\EulerGamma@{\frac{1}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{4}-\frac{1}{2}a)} > 0, \realpart@@{(\frac{3}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>subs( temp=0, diff( CylinderV(a, temp), temp$(1) ) ) = (Pi*(2)^((1)/(2)*a +(3)/(4)))/((GAMMA((1)/(4)-(1)/(2)*a))^(2)* GAMMA((3)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, temp] + ParabolicCylinderD[-(a) - 1/2, -(temp)]), {temp, 1}]/.temp-> 0) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[3,4]),(Gamma[Divide[1,4]-Divide[1,2]*a])^(2)* Gamma[Divide[3,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.7978845608028653
| [https://dlmf.nist.gov/12.2.E9 12.2.E9] || <math qid="Q4094">\paraV'@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{3}{4}}}{\left(\EulerGamma@{\frac{1}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV'@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{3}{4}}}{\left(\EulerGamma@{\frac{1}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{4}-\frac{1}{2}a)} > 0, \realpart@@{(\frac{3}{4}+\frac{1}{2}a)} > 0</math> || <syntaxhighlight lang=mathematica>subs( temp=0, diff( CylinderV(a, temp), temp$(1) ) ) = (Pi*(2)^((1)/(2)*a +(3)/(4)))/((GAMMA((1)/(4)-(1)/(2)*a))^(2)* GAMMA((3)/(4)+(1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, temp] + ParabolicCylinderD[-(a) - 1/2, -(temp)]), {temp, 1}]/.temp-> 0) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[3,4]),(Gamma[Divide[1,4]-Divide[1,2]*a])^(2)* Gamma[Divide[3,4]+Divide[1,2]*a]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.7978845608028653
Test Values: {Rule[a, -0.5]}</syntaxhighlight><br></div></div>
Test Values: {Rule[a, -0.5]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E10 12.2.E10] || [[Item:Q4095|<math>\Wronskian@{\paraU@{a}{z},\paraV@{a}{z}} = \sqrt{2/\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraV@{a}{z}} = \sqrt{2/\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderV(a, z), z)-diff(CylinderU(a, z), z)*(CylinderV(a, z)) = sqrt(2/Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])}, z] == Sqrt[2/Pi]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .708254234e-1-.722805450e-2*I
| [https://dlmf.nist.gov/12.2.E10 12.2.E10] || <math qid="Q4095">\Wronskian@{\paraU@{a}{z},\paraV@{a}{z}} = \sqrt{2/\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraV@{a}{z}} = \sqrt{2/\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderV(a, z), z)-diff(CylinderU(a, z), z)*(CylinderV(a, z)) = sqrt(2/Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])}, z] == Sqrt[2/Pi]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .708254234e-1-.722805450e-2*I
Test Values: {a = 3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4257865765+.241883787*I
Test Values: {a = 3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4257865765+.241883787*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.7978845608028654, Times[Complex[-3.533949646070574*^-17, -3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.7978845608028654, Times[Complex[-3.533949646070574*^-17, -3.533949646070574*^-17], GAMMA[-1.0]]]
Line 50: Line 50:
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E11 12.2.E11] || [[Item:Q4096|<math>\Wronskian@{\paraU@{a}{z},\paraU@{a}{-z}} = \frac{\sqrt{2\pi}}{\EulerGamma@{\frac{1}{2}+a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraU@{a}{-z}} = \frac{\sqrt{2\pi}}{\EulerGamma@{\frac{1}{2}+a}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderU(a, - z), z)-diff(CylinderU(a, z), z)*(CylinderU(a, - z)) = (sqrt(2*Pi))/(GAMMA((1)/(2)+ a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(a), - z]}, z] == Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E11 12.2.E11] || <math qid="Q4096">\Wronskian@{\paraU@{a}{z},\paraU@{a}{-z}} = \frac{\sqrt{2\pi}}{\EulerGamma@{\frac{1}{2}+a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraU@{a}{-z}} = \frac{\sqrt{2\pi}}{\EulerGamma@{\frac{1}{2}+a}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderU(a, - z), z)-diff(CylinderU(a, z), z)*(CylinderU(a, - z)) = (sqrt(2*Pi))/(GAMMA((1)/(2)+ a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(a), - z]}, z] == Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E12 12.2.E12] || [[Item:Q4097|<math>\Wronskian@{\paraU@{a}{z},\paraU@{-a}{+ iz}} = - ie^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraU@{-a}{+ iz}} = - ie^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderU(- a, + I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, + I*z)) = - I*exp(+ I*Pi*((1)/(2)*a +(1)/(4)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), + I*z]}, z] == - I*Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
| [https://dlmf.nist.gov/12.2.E12 12.2.E12] || <math qid="Q4097">\Wronskian@{\paraU@{a}{z},\paraU@{-a}{+ iz}} = - ie^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraU@{-a}{+ iz}} = - ie^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderU(- a, + I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, + I*z)) = - I*exp(+ I*Pi*((1)/(2)*a +(1)/(4)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), + I*z]}, z] == - I*Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E12 12.2.E12] || [[Item:Q4097|<math>\Wronskian@{\paraU@{a}{z},\paraU@{-a}{- iz}} = + ie^{- i\pi(\frac{1}{2}a+\frac{1}{4})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraU@{-a}{- iz}} = + ie^{- i\pi(\frac{1}{2}a+\frac{1}{4})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderU(- a, - I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, - I*z)) = + I*exp(- I*Pi*((1)/(2)*a +(1)/(4)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), - I*z]}, z] == + I*Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
| [https://dlmf.nist.gov/12.2.E12 12.2.E12] || <math qid="Q4097">\Wronskian@{\paraU@{a}{z},\paraU@{-a}{- iz}} = + ie^{- i\pi(\frac{1}{2}a+\frac{1}{4})}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\paraU@{a}{z},\paraU@{-a}{- iz}} = + ie^{- i\pi(\frac{1}{2}a+\frac{1}{4})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(CylinderU(a, z))*diff(CylinderU(- a, - I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, - I*z)) = + I*exp(- I*Pi*((1)/(2)*a +(1)/(4)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), - I*z]}, z] == + I*Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E13 12.2.E13] || [[Item:Q4098|<math>\paraU@{-n-\tfrac{1}{2}}{-z} = (-1)^{n}\paraU@{-n-\tfrac{1}{2}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{-n-\tfrac{1}{2}}{-z} = (-1)^{n}\paraU@{-n-\tfrac{1}{2}}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>CylinderU(- n -(1)/(2), - z) = (- 1)^(n)* CylinderU(- n -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), - z] == (- 1)^(n)* ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E13 12.2.E13] || <math qid="Q4098">\paraU@{-n-\tfrac{1}{2}}{-z} = (-1)^{n}\paraU@{-n-\tfrac{1}{2}}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{-n-\tfrac{1}{2}}{-z} = (-1)^{n}\paraU@{-n-\tfrac{1}{2}}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>CylinderU(- n -(1)/(2), - z) = (- 1)^(n)* CylinderU(- n -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), - z] == (- 1)^(n)* ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E14 12.2.E14] || [[Item:Q4099|<math>\paraV@{n+\tfrac{1}{2}}{-z} = (-1)^{n}\paraV@{n+\tfrac{1}{2}}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{n+\tfrac{1}{2}}{-z} = (-1)^{n}\paraV@{n+\tfrac{1}{2}}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>CylinderV(n +(1)/(2), - z) = (- 1)^(n)* CylinderV(n +(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, - z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(- z)]) == (- 1)^(n)* Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(z)])</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E14 12.2.E14] || <math qid="Q4099">\paraV@{n+\tfrac{1}{2}}{-z} = (-1)^{n}\paraV@{n+\tfrac{1}{2}}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{n+\tfrac{1}{2}}{-z} = (-1)^{n}\paraV@{n+\tfrac{1}{2}}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>CylinderV(n +(1)/(2), - z) = (- 1)^(n)* CylinderV(n +(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, - z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(- z)]) == (- 1)^(n)* Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(z)])</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E15 12.2.E15] || [[Item:Q4100|<math>\paraU@{a}{-z} = -\sin@{\pi a}\paraU@{a}{z}+\frac{\pi}{\EulerGamma@{\frac{1}{2}+a}}\paraV@{a}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{-z} = -\sin@{\pi a}\paraU@{a}{z}+\frac{\pi}{\EulerGamma@{\frac{1}{2}+a}}\paraV@{a}{z}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, - z) = - sin(Pi*a)*CylinderU(a, z)+(Pi)/(GAMMA((1)/(2)+ a))*CylinderV(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), - z] == - Sin[Pi*a]*ParabolicCylinderD[- 1/2 -(a), z]+Divide[Pi,Gamma[Divide[1,2]+ a]]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.097331412545913, 1.9154557103012664], Times[Complex[-2.097331412545913, -1.9154557103012664], GAMMA[2.0]]]
| [https://dlmf.nist.gov/12.2.E15 12.2.E15] || <math qid="Q4100">\paraU@{a}{-z} = -\sin@{\pi a}\paraU@{a}{z}+\frac{\pi}{\EulerGamma@{\frac{1}{2}+a}}\paraV@{a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{-z} = -\sin@{\pi a}\paraU@{a}{z}+\frac{\pi}{\EulerGamma@{\frac{1}{2}+a}}\paraV@{a}{z}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, - z) = - sin(Pi*a)*CylinderU(a, z)+(Pi)/(GAMMA((1)/(2)+ a))*CylinderV(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), - z] == - Sin[Pi*a]*ParabolicCylinderD[- 1/2 -(a), z]+Divide[Pi,Gamma[Divide[1,2]+ a]]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.097331412545913, 1.9154557103012664], Times[Complex[-2.097331412545913, -1.9154557103012664], GAMMA[2.0]]]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.668689589092481, 2.108602350101492], Times[Complex[0.668689589092481, -2.108602350101492], GAMMA[2.0]]]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.668689589092481, 2.108602350101492], Times[Complex[0.668689589092481, -2.108602350101492], GAMMA[2.0]]]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E16 12.2.E16] || [[Item:Q4101|<math>\paraV@{a}{-z} = \frac{\cos@{\pi a}}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sin@{\pi a}\paraV@{a}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{-z} = \frac{\cos@{\pi a}}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sin@{\pi a}\paraV@{a}{z}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, - z) = (cos(Pi*a))/(GAMMA((1)/(2)- a))*CylinderU(a, z)+ sin(Pi*a)*CylinderV(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, - z] + ParabolicCylinderD[-(a) - 1/2, -(- z)]) == Divide[Cos[Pi*a],Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+ Sin[Pi*a]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.3494376482945125, -0.44804866867585064], Times[Complex[0.1478618109503913, 0.18958829384201614], GAMMA[-1.5]]]
| [https://dlmf.nist.gov/12.2.E16 12.2.E16] || <math qid="Q4101">\paraV@{a}{-z} = \frac{\cos@{\pi a}}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sin@{\pi a}\paraV@{a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{-z} = \frac{\cos@{\pi a}}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sin@{\pi a}\paraV@{a}{z}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, - z) = (cos(Pi*a))/(GAMMA((1)/(2)- a))*CylinderU(a, z)+ sin(Pi*a)*CylinderV(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, - z] + ParabolicCylinderD[-(a) - 1/2, -(- z)]) == Divide[Cos[Pi*a],Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+ Sin[Pi*a]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.3494376482945125, -0.44804866867585064], Times[Complex[0.1478618109503913, 0.18958829384201614], GAMMA[-1.5]]]
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.1936070900897449, -0.06991225535058408], Times[Complex[-0.5050655153080368, 0.029582824673347826], GAMMA[-1.5]]]
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.1936070900897449, -0.06991225535058408], Times[Complex[-0.5050655153080368, 0.029582824673347826], GAMMA[-1.5]]]
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E17 12.2.E17] || [[Item:Q4102|<math>\sqrt{2\pi}\paraU@{-a}{+ iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{-a}{+ iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(- a, + I*z) = GAMMA((1)/(2)+ a)*(exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), + I*z] == Gamma[Divide[1,2]+ a]*(Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E17 12.2.E17] || <math qid="Q4102">\sqrt{2\pi}\paraU@{-a}{+ iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{-a}{+ iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(- a, + I*z) = GAMMA((1)/(2)+ a)*(exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), + I*z] == Gamma[Divide[1,2]+ a]*(Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E17 12.2.E17] || [[Item:Q4102|<math>\sqrt{2\pi}\paraU@{-a}{- iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{-a}{- iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(- a, - I*z) = GAMMA((1)/(2)+ a)*(exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), - I*z] == Gamma[Divide[1,2]+ a]*(Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E17 12.2.E17] || <math qid="Q4102">\sqrt{2\pi}\paraU@{-a}{- iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{-a}{- iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(- a, - I*z) = GAMMA((1)/(2)+ a)*(exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), - I*z] == Gamma[Divide[1,2]+ a]*(Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E18 12.2.E18] || [[Item:Q4103|<math>\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}+e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}+e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z)+ exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]+ Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E18 12.2.E18] || <math qid="Q4103">\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}+e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}+e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z)+ exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]+ Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E18 12.2.E18] || [[Item:Q4103|<math>\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}+e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}+e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z)+ exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]+ Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E18 12.2.E18] || <math qid="Q4103">\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}+e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}+e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z)+ exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]+ Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z])</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E19 12.2.E19] || [[Item:Q4104|<math>\paraU@{a}{z} = + ie^{+ i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{z} = + ie^{+ i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, z) = + I*exp(+ I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), z] == + I*Exp[+ I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E19 12.2.E19] || <math qid="Q4104">\paraU@{a}{z} = + ie^{+ i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{z} = + ie^{+ i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, z) = + I*exp(+ I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), z] == + I*Exp[+ I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E19 12.2.E19] || [[Item:Q4104|<math>\paraU@{a}{z} = - ie^{- i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{z} = - ie^{- i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, z) = - I*exp(- I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), z] == - I*Exp[- I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/12.2.E19 12.2.E19] || <math qid="Q4104">\paraU@{a}{z} = - ie^{- i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraU@{a}{z} = - ie^{- i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderU(a, z) = - I*exp(- I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ParabolicCylinderD[- 1/2 -(a), z] == - I*Exp[- I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/12.2.E20 12.2.E20] || [[Item:Q4105|<math>\paraV@{a}{z} = \frac{- i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{z} = \frac{- i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, z) = (- I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[- I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.4621744673825597, -0.43960813814518984], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]]
| [https://dlmf.nist.gov/12.2.E20 12.2.E20] || <math qid="Q4105">\paraV@{a}{z} = \frac{- i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{z} = \frac{- i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, z) = (- I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[- I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.4621744673825597, -0.43960813814518984], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0415095884926804, 0.5968092652227893], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0415095884926804, 0.5968092652227893], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.2.E20 12.2.E20] || [[Item:Q4105|<math>\paraV@{a}{z} = \frac{+ i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{z} = \frac{+ i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, z) = (+ I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[+ I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.4621744673825599, -0.4396081381451897], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]]
| [https://dlmf.nist.gov/12.2.E20 12.2.E20] || <math qid="Q4105">\paraV@{a}{z} = \frac{+ i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\paraV@{a}{z} = \frac{+ i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-a)} > 0</math> || <syntaxhighlight lang=mathematica>CylinderV(a, z) = (+ I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[+ I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.4621744673825599, -0.4396081381451897], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0415095884926797, 0.5968092652227891], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0415095884926797, 0.5968092652227891], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:30, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.2.E2 d 2 w d z 2 - ( 1 4 z 2 + a ) w = 0 derivative 𝑤 𝑧 2 1 4 superscript 𝑧 2 𝑎 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}-\left(% \tfrac{1}{4}z^{2}+a\right)w=0}}
\deriv[2]{w}{z}-\left(\tfrac{1}{4}z^{2}+a\right)w = 0

diff(w, [z$(2)])-((1)/(4)*(z)^(2)+ a)*w = 0
D[w, {z, 2}]-(Divide[1,4]*(z)^(2)+ a)*w == 0
Failure Failure
Failed [300 / 300]
Result: 1.299038106+.4999999999*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.299038106+1.000000000*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.2990381056766582, 0.4999999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.299038105676658, 0.9999999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.2.E3 d 2 w d z 2 + ( 1 4 z 2 - a ) w = 0 derivative 𝑤 𝑧 2 1 4 superscript 𝑧 2 𝑎 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(% \tfrac{1}{4}z^{2}-a\right)w=0}}
\deriv[2]{w}{z}+\left(\tfrac{1}{4}z^{2}-a\right)w = 0

diff(w, [z$(2)])+((1)/(4)*(z)^(2)- a)*w = 0
D[w, {z, 2}]+(Divide[1,4]*(z)^(2)- a)*w == 0
Failure Failure
Failed [300 / 300]
Result: 1.299038106+1.000000000*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.299038106+.4999999999*I
Test Values: {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.299038105676658, 0.9999999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.2990381056766582, 0.4999999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.2.E4 d 2 w d z 2 + ( ν + 1 2 - 1 4 z 2 ) w = 0 derivative 𝑤 𝑧 2 𝜈 1 2 1 4 superscript 𝑧 2 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(% \nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w=0}}
\deriv[2]{w}{z}+\left(\nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w = 0

diff(w, [z$(2)])+(nu +(1)/(2)-(1)/(4)*(z)^(2))*w = 0
D[w, {z, 2}]+(\[Nu]+Divide[1,2]-Divide[1,4]*(z)^(2))*w == 0
Failure Failure
Failed [300 / 300]
Result: .9330127024+.8660254039*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .9330127024+1.366025404*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [296 / 300]
Result: Complex[0.9330127018922196, 0.8660254037844386]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.4330127018922191, 0.5000000000000001]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.2.E5 D ν ( z ) = U ( - 1 2 - ν , z ) Whittaker-D 𝜈 𝑧 parabolic-U 1 2 𝜈 𝑧 {\displaystyle{\displaystyle D_{\nu}\left(z\right)=U\left(-\tfrac{1}{2}-\nu,z% \right)}}
\WhittakerparaD{\nu}@{z} = \paraU@{-\tfrac{1}{2}-\nu}{z}

CylinderD(nu, z) = CylinderU(-(1)/(2)- nu, z)
ParabolicCylinderD[\[Nu], z] == ParabolicCylinderD[- 1/2 -(-Divide[1,2]- \[Nu]), z]
Successful Successful - Successful [Tested: 70]
12.2.E6 U ( a , 0 ) = π 2 1 2 a + 1 4 Γ ( 3 4 + 1 2 a ) parabolic-U 𝑎 0 𝜋 superscript 2 1 2 𝑎 1 4 Euler-Gamma 3 4 1 2 𝑎 {\displaystyle{\displaystyle U\left(a,0\right)=\frac{\sqrt{\pi}}{2^{\frac{1}{2% }a+\frac{1}{4}}\Gamma\left(\frac{3}{4}+\frac{1}{2}a\right)}}}
\paraU@{a}{0} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}a+\frac{1}{4}}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}
( 3 4 + 1 2 a ) > 0 3 4 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{3}{4}+\frac{1}{2}a)>0}}
CylinderU(a, 0) = (sqrt(Pi))/((2)^((1)/(2)*a +(1)/(4))* GAMMA((3)/(4)+(1)/(2)*a))
ParabolicCylinderD[- 1/2 -(a), 0] == Divide[Sqrt[Pi],(2)^(Divide[1,2]*a +Divide[1,4])* Gamma[Divide[3,4]+Divide[1,2]*a]]
Successful Successful - Successful [Tested: 4]
12.2.E7 U ( a , 0 ) = - π 2 1 2 a - 1 4 Γ ( 1 4 + 1 2 a ) diffop parabolic-U 1 𝑎 0 𝜋 superscript 2 1 2 𝑎 1 4 Euler-Gamma 1 4 1 2 𝑎 {\displaystyle{\displaystyle U'\left(a,0\right)=-\frac{\sqrt{\pi}}{2^{\frac{1}% {2}a-\frac{1}{4}}\Gamma\left(\frac{1}{4}+\frac{1}{2}a\right)}}}
\paraU'@{a}{0} = -\frac{\sqrt{\pi}}{2^{\frac{1}{2}a-\frac{1}{4}}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}
( 1 4 + 1 2 a ) > 0 1 4 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{1}{4}+\frac{1}{2}a)>0}}
subs( temp=0, diff( CylinderU(a, temp), temp$(1) ) ) = -(sqrt(Pi))/((2)^((1)/(2)*a -(1)/(4))* GAMMA((1)/(4)+(1)/(2)*a))
(D[ParabolicCylinderD[- 1/2 -(a), temp], {temp, 1}]/.temp-> 0) == -Divide[Sqrt[Pi],(2)^(Divide[1,2]*a -Divide[1,4])* Gamma[Divide[1,4]+Divide[1,2]*a]]
Successful Successful - Successful [Tested: 3]
12.2.E8 V ( a , 0 ) = π 2 1 2 a + 1 4 ( Γ ( 3 4 - 1 2 a ) ) 2 Γ ( 1 4 + 1 2 a ) parabolic-V 𝑎 0 𝜋 superscript 2 1 2 𝑎 1 4 superscript Euler-Gamma 3 4 1 2 𝑎 2 Euler-Gamma 1 4 1 2 𝑎 {\displaystyle{\displaystyle V\left(a,0\right)=\frac{\pi 2^{\frac{1}{2}a+\frac% {1}{4}}}{\left(\Gamma\left(\frac{3}{4}-\frac{1}{2}a\right)\right)^{2}\Gamma% \left(\frac{1}{4}+\frac{1}{2}a\right)}}}
\paraV@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{1}{4}}}{\left(\EulerGamma@{\frac{3}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}
( 3 4 - 1 2 a ) > 0 , ( 1 4 + 1 2 a ) > 0 formulae-sequence 3 4 1 2 𝑎 0 1 4 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{3}{4}-\frac{1}{2}a)>0,\Re(\frac{1}{4}+% \frac{1}{2}a)>0}}
CylinderV(a, 0) = (Pi*(2)^((1)/(2)*a +(1)/(4)))/((GAMMA((3)/(4)-(1)/(2)*a))^(2)* GAMMA((1)/(4)+(1)/(2)*a))
Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, 0] + ParabolicCylinderD[-(a) - 1/2, -(0)]) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[1,4]),(Gamma[Divide[3,4]-Divide[1,2]*a])^(2)* Gamma[Divide[1,4]+Divide[1,2]*a]]
Successful Failure -
Failed [1 / 1]
Result: Plus[-0.7978845608028653, Times[0.7978845608028655, GAMMA[1.0]]]
Test Values: {Rule[a, 0.5]}

12.2.E9 V ( a , 0 ) = π 2 1 2 a + 3 4 ( Γ ( 1 4 - 1 2 a ) ) 2 Γ ( 3 4 + 1 2 a ) diffop parabolic-V 1 𝑎 0 𝜋 superscript 2 1 2 𝑎 3 4 superscript Euler-Gamma 1 4 1 2 𝑎 2 Euler-Gamma 3 4 1 2 𝑎 {\displaystyle{\displaystyle V'\left(a,0\right)=\frac{\pi 2^{\frac{1}{2}a+% \frac{3}{4}}}{\left(\Gamma\left(\frac{1}{4}-\frac{1}{2}a\right)\right)^{2}% \Gamma\left(\frac{3}{4}+\frac{1}{2}a\right)}}}
\paraV'@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{3}{4}}}{\left(\EulerGamma@{\frac{1}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}
( 1 4 - 1 2 a ) > 0 , ( 3 4 + 1 2 a ) > 0 formulae-sequence 1 4 1 2 𝑎 0 3 4 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{1}{4}-\frac{1}{2}a)>0,\Re(\frac{3}{4}+% \frac{1}{2}a)>0}}
subs( temp=0, diff( CylinderV(a, temp), temp$(1) ) ) = (Pi*(2)^((1)/(2)*a +(3)/(4)))/((GAMMA((1)/(4)-(1)/(2)*a))^(2)* GAMMA((3)/(4)+(1)/(2)*a))
(D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, temp] + ParabolicCylinderD[-(a) - 1/2, -(temp)]), {temp, 1}]/.temp-> 0) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[3,4]),(Gamma[Divide[1,4]-Divide[1,2]*a])^(2)* Gamma[Divide[3,4]+Divide[1,2]*a]]
Successful Failure -
Failed [1 / 1]
Result: -0.7978845608028653
Test Values: {Rule[a, -0.5]}

12.2.E10 𝒲 { U ( a , z ) , V ( a , z ) } = 2 / π Wronskian parabolic-U 𝑎 𝑧 parabolic-V 𝑎 𝑧 2 𝜋 {\displaystyle{\displaystyle\mathscr{W}\left\{U\left(a,z\right),V\left(a,z% \right)\right\}=\sqrt{2/\pi}}}
\Wronskian@{\paraU@{a}{z},\paraV@{a}{z}} = \sqrt{2/\pi}

(CylinderU(a, z))*diff(CylinderV(a, z), z)-diff(CylinderU(a, z), z)*(CylinderV(a, z)) = sqrt(2/Pi)
Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])}, z] == Sqrt[2/Pi]
Failure Failure
Failed [14 / 42]
Result: .708254234e-1-.722805450e-2*I
Test Values: {a = 3/2, z = 1/2*3^(1/2)+1/2*I}

Result: .4257865765+.241883787*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [42 / 42]
Result: Plus[-0.7978845608028654, Times[Complex[-3.533949646070574*^-17, -3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.7978845608028654, Times[Complex[0.0, -2.1203697876423444*^-16], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.2.E11 𝒲 { U ( a , z ) , U ( a , - z ) } = 2 π Γ ( 1 2 + a ) Wronskian parabolic-U 𝑎 𝑧 parabolic-U 𝑎 𝑧 2 𝜋 Euler-Gamma 1 2 𝑎 {\displaystyle{\displaystyle\mathscr{W}\left\{U\left(a,z\right),U\left(a,-z% \right)\right\}=\frac{\sqrt{2\pi}}{\Gamma\left(\frac{1}{2}+a\right)}}}
\Wronskian@{\paraU@{a}{z},\paraU@{a}{-z}} = \frac{\sqrt{2\pi}}{\EulerGamma@{\frac{1}{2}+a}}
( 1 2 + a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{1}{2}+a)>0}}
(CylinderU(a, z))*diff(CylinderU(a, - z), z)-diff(CylinderU(a, z), z)*(CylinderU(a, - z)) = (sqrt(2*Pi))/(GAMMA((1)/(2)+ a))
Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(a), - z]}, z] == Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E12 𝒲 { U ( a , z ) , U ( - a , + i z ) } = - i e + i π ( 1 2 a + 1 4 ) Wronskian parabolic-U 𝑎 𝑧 parabolic-U 𝑎 𝑖 𝑧 𝑖 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 {\displaystyle{\displaystyle\mathscr{W}\left\{U\left(a,z\right),U\left(-a,+iz% \right)\right\}=-ie^{+i\pi(\frac{1}{2}a+\frac{1}{4})}}}
\Wronskian@{\paraU@{a}{z},\paraU@{-a}{+ iz}} = - ie^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}

(CylinderU(a, z))*diff(CylinderU(- a, + I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, + I*z)) = - I*exp(+ I*Pi*((1)/(2)*a +(1)/(4)))
Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), + I*z]}, z] == - I*Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
12.2.E12 𝒲 { U ( a , z ) , U ( - a , - i z ) } = + i e - i π ( 1 2 a + 1 4 ) Wronskian parabolic-U 𝑎 𝑧 parabolic-U 𝑎 𝑖 𝑧 𝑖 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 {\displaystyle{\displaystyle\mathscr{W}\left\{U\left(a,z\right),U\left(-a,-iz% \right)\right\}=+ie^{-i\pi(\frac{1}{2}a+\frac{1}{4})}}}
\Wronskian@{\paraU@{a}{z},\paraU@{-a}{- iz}} = + ie^{- i\pi(\frac{1}{2}a+\frac{1}{4})}

(CylinderU(a, z))*diff(CylinderU(- a, - I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, - I*z)) = + I*exp(- I*Pi*((1)/(2)*a +(1)/(4)))
Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), - I*z]}, z] == + I*Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
12.2.E13 U ( - n - 1 2 , - z ) = ( - 1 ) n U ( - n - 1 2 , z ) parabolic-U 𝑛 1 2 𝑧 superscript 1 𝑛 parabolic-U 𝑛 1 2 𝑧 {\displaystyle{\displaystyle U\left(-n-\tfrac{1}{2},-z\right)=(-1)^{n}U\left(-% n-\tfrac{1}{2},z\right)}}
\paraU@{-n-\tfrac{1}{2}}{-z} = (-1)^{n}\paraU@{-n-\tfrac{1}{2}}{z}

CylinderU(- n -(1)/(2), - z) = (- 1)^(n)* CylinderU(- n -(1)/(2), z)
ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), - z] == (- 1)^(n)* ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E14 V ( n + 1 2 , - z ) = ( - 1 ) n V ( n + 1 2 , z ) parabolic-V 𝑛 1 2 𝑧 superscript 1 𝑛 parabolic-V 𝑛 1 2 𝑧 {\displaystyle{\displaystyle V\left(n+\tfrac{1}{2},-z\right)=(-1)^{n}V\left(n+% \tfrac{1}{2},z\right)}}
\paraV@{n+\tfrac{1}{2}}{-z} = (-1)^{n}\paraV@{n+\tfrac{1}{2}}{z}

CylinderV(n +(1)/(2), - z) = (- 1)^(n)* CylinderV(n +(1)/(2), z)
Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, - z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(- z)]) == (- 1)^(n)* Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(z)])
Successful Failure - Successful [Tested: 21]
12.2.E15 U ( a , - z ) = - sin ( π a ) U ( a , z ) + π Γ ( 1 2 + a ) V ( a , z ) parabolic-U 𝑎 𝑧 𝜋 𝑎 parabolic-U 𝑎 𝑧 𝜋 Euler-Gamma 1 2 𝑎 parabolic-V 𝑎 𝑧 {\displaystyle{\displaystyle U\left(a,-z\right)=-\sin\left(\pi a\right)U\left(% a,z\right)+\frac{\pi}{\Gamma\left(\frac{1}{2}+a\right)}V\left(a,z\right)}}
\paraU@{a}{-z} = -\sin@{\pi a}\paraU@{a}{z}+\frac{\pi}{\EulerGamma@{\frac{1}{2}+a}}\paraV@{a}{z}
( 1 2 + a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{1}{2}+a)>0}}
CylinderU(a, - z) = - sin(Pi*a)*CylinderU(a, z)+(Pi)/(GAMMA((1)/(2)+ a))*CylinderV(a, z)
ParabolicCylinderD[- 1/2 -(a), - z] == - Sin[Pi*a]*ParabolicCylinderD[- 1/2 -(a), z]+Divide[Pi,Gamma[Divide[1,2]+ a]]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])
Successful Failure -
Failed [21 / 21]
Result: Plus[Complex[2.097331412545913, 1.9154557103012664], Times[Complex[-2.097331412545913, -1.9154557103012664], GAMMA[2.0]]]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.668689589092481, 2.108602350101492], Times[Complex[0.668689589092481, -2.108602350101492], GAMMA[2.0]]]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.2.E16 V ( a , - z ) = cos ( π a ) Γ ( 1 2 - a ) U ( a , z ) + sin ( π a ) V ( a , z ) parabolic-V 𝑎 𝑧 𝜋 𝑎 Euler-Gamma 1 2 𝑎 parabolic-U 𝑎 𝑧 𝜋 𝑎 parabolic-V 𝑎 𝑧 {\displaystyle{\displaystyle V\left(a,-z\right)=\frac{\cos\left(\pi a\right)}{% \Gamma\left(\frac{1}{2}-a\right)}U\left(a,z\right)+\sin\left(\pi a\right)V% \left(a,z\right)}}
\paraV@{a}{-z} = \frac{\cos@{\pi a}}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sin@{\pi a}\paraV@{a}{z}
( 1 2 - a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{1}{2}-a)>0}}
CylinderV(a, - z) = (cos(Pi*a))/(GAMMA((1)/(2)- a))*CylinderU(a, z)+ sin(Pi*a)*CylinderV(a, z)
Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, - z] + ParabolicCylinderD[-(a) - 1/2, -(- z)]) == Divide[Cos[Pi*a],Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+ Sin[Pi*a]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])
Failure Failure Successful [Tested: 21]
Failed [7 / 21]
Result: Plus[Complex[-0.3494376482945125, -0.44804866867585064], Times[Complex[0.1478618109503913, 0.18958829384201614], GAMMA[-1.5]]]
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.1936070900897449, -0.06991225535058408], Times[Complex[-0.5050655153080368, 0.029582824673347826], GAMMA[-1.5]]]
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.2.E17 2 π U ( - a , + i z ) = Γ ( 1 2 + a ) ( e - i π ( 1 2 a - 1 4 ) U ( a , z ) + e + i π ( 1 2 a - 1 4 ) U ( a , - z ) ) 2 𝜋 parabolic-U 𝑎 𝑖 𝑧 Euler-Gamma 1 2 𝑎 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑧 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑧 {\displaystyle{\displaystyle\sqrt{2\pi}U\left(-a,+iz\right)=\Gamma\left(\tfrac% {1}{2}+a\right)\left(e^{-i\pi(\frac{1}{2}a-\frac{1}{4})}U\left(a,z\right)+e^{+% i\pi(\frac{1}{2}a-\frac{1}{4})}U\left(a,-z\right)\right)}}
\sqrt{2\pi}\paraU@{-a}{+ iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)
( 1 2 + a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}+a)>0}}
sqrt(2*Pi)*CylinderU(- a, + I*z) = GAMMA((1)/(2)+ a)*(exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z))
Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), + I*z] == Gamma[Divide[1,2]+ a]*(Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z])
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E17 2 π U ( - a , - i z ) = Γ ( 1 2 + a ) ( e + i π ( 1 2 a - 1 4 ) U ( a , z ) + e - i π ( 1 2 a - 1 4 ) U ( a , - z ) ) 2 𝜋 parabolic-U 𝑎 𝑖 𝑧 Euler-Gamma 1 2 𝑎 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑧 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑧 {\displaystyle{\displaystyle\sqrt{2\pi}U\left(-a,-iz\right)=\Gamma\left(\tfrac% {1}{2}+a\right)\left(e^{+i\pi(\frac{1}{2}a-\frac{1}{4})}U\left(a,z\right)+e^{-% i\pi(\frac{1}{2}a-\frac{1}{4})}U\left(a,-z\right)\right)}}
\sqrt{2\pi}\paraU@{-a}{- iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)
( 1 2 + a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}+a)>0}}
sqrt(2*Pi)*CylinderU(- a, - I*z) = GAMMA((1)/(2)+ a)*(exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z))
Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), - I*z] == Gamma[Divide[1,2]+ a]*(Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z])
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E18 2 π U ( a , z ) = Γ ( 1 2 - a ) ( e - i π ( 1 2 a + 1 4 ) U ( - a , + i z ) + e + i π ( 1 2 a + 1 4 ) U ( - a , - i z ) ) 2 𝜋 parabolic-U 𝑎 𝑧 Euler-Gamma 1 2 𝑎 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 {\displaystyle{\displaystyle\sqrt{2\pi}U\left(a,z\right)=\Gamma\left(\tfrac{1}% {2}-a\right)\left(e^{-i\pi(\frac{1}{2}a+\frac{1}{4})}U\left(-a,+iz\right)+e^{+% i\pi(\frac{1}{2}a+\frac{1}{4})}U\left(-a,-iz\right)\right)}}
\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}+e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}\right)
( 1 2 - a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}-a)>0}}
sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z)+ exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z))
Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]+ Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z])
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E18 2 π U ( a , z ) = Γ ( 1 2 - a ) ( e + i π ( 1 2 a + 1 4 ) U ( - a , - i z ) + e - i π ( 1 2 a + 1 4 ) U ( - a , + i z ) ) 2 𝜋 parabolic-U 𝑎 𝑧 Euler-Gamma 1 2 𝑎 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 {\displaystyle{\displaystyle\sqrt{2\pi}U\left(a,z\right)=\Gamma\left(\tfrac{1}% {2}-a\right)\left(e^{+i\pi(\frac{1}{2}a+\frac{1}{4})}U\left(-a,-iz\right)+e^{-% i\pi(\frac{1}{2}a+\frac{1}{4})}U\left(-a,+iz\right)\right)}}
\sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}+e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}\right)
( 1 2 - a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}-a)>0}}
sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z)+ exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z))
Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]+ Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z])
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E19 U ( a , z ) = + i e + i π a U ( a , - z ) + 2 π Γ ( 1 2 + a ) e + i π ( 1 2 a - 1 4 ) U ( - a , + i z ) parabolic-U 𝑎 𝑧 𝑖 superscript 𝑒 𝑖 𝜋 𝑎 parabolic-U 𝑎 𝑧 2 𝜋 Euler-Gamma 1 2 𝑎 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 {\displaystyle{\displaystyle U\left(a,z\right)=+ie^{+i\pi a}U\left(a,-z\right)% +\frac{\sqrt{2\pi}}{\Gamma\left(\tfrac{1}{2}+a\right)}e^{+i\pi(\frac{1}{2}a-% \frac{1}{4})}U\left(-a,+iz\right)}}
\paraU@{a}{z} = + ie^{+ i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}
( 1 2 + a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}+a)>0}}
CylinderU(a, z) = + I*exp(+ I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z)
ParabolicCylinderD[- 1/2 -(a), z] == + I*Exp[+ I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E19 U ( a , z ) = - i e - i π a U ( a , - z ) + 2 π Γ ( 1 2 + a ) e - i π ( 1 2 a - 1 4 ) U ( - a , - i z ) parabolic-U 𝑎 𝑧 𝑖 superscript 𝑒 𝑖 𝜋 𝑎 parabolic-U 𝑎 𝑧 2 𝜋 Euler-Gamma 1 2 𝑎 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 {\displaystyle{\displaystyle U\left(a,z\right)=-ie^{-i\pi a}U\left(a,-z\right)% +\frac{\sqrt{2\pi}}{\Gamma\left(\tfrac{1}{2}+a\right)}e^{-i\pi(\frac{1}{2}a-% \frac{1}{4})}U\left(-a,-iz\right)}}
\paraU@{a}{z} = - ie^{- i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}
( 1 2 + a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}+a)>0}}
CylinderU(a, z) = - I*exp(- I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z)
ParabolicCylinderD[- 1/2 -(a), z] == - I*Exp[- I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E20 V ( a , z ) = - i Γ ( 1 2 - a ) U ( a , z ) + 2 π e - i π ( 1 2 a - 1 4 ) U ( - a , + i z ) parabolic-V 𝑎 𝑧 𝑖 Euler-Gamma 1 2 𝑎 parabolic-U 𝑎 𝑧 2 𝜋 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 {\displaystyle{\displaystyle V\left(a,z\right)=\frac{-i}{\Gamma\left(\frac{1}{% 2}-a\right)}U\left(a,z\right)+\sqrt{\frac{2}{\pi}}e^{-i\pi(\frac{1}{2}a-\frac{% 1}{4})}U\left(-a,+iz\right)}}
\paraV@{a}{z} = \frac{- i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}
( 1 2 - a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{1}{2}-a)>0}}
CylinderV(a, z) = (- I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z)
Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[- I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]
Failure Failure Successful [Tested: 21]
Failed [21 / 21]
Result: Plus[Complex[0.4621744673825597, -0.43960813814518984], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.0415095884926804, 0.5968092652227893], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.2.E20 V ( a , z ) = + i Γ ( 1 2 - a ) U ( a , z ) + 2 π e + i π ( 1 2 a - 1 4 ) U ( - a , - i z ) parabolic-V 𝑎 𝑧 𝑖 Euler-Gamma 1 2 𝑎 parabolic-U 𝑎 𝑧 2 𝜋 superscript 𝑒 𝑖 𝜋 1 2 𝑎 1 4 parabolic-U 𝑎 𝑖 𝑧 {\displaystyle{\displaystyle V\left(a,z\right)=\frac{+i}{\Gamma\left(\frac{1}{% 2}-a\right)}U\left(a,z\right)+\sqrt{\frac{2}{\pi}}e^{+i\pi(\frac{1}{2}a-\frac{% 1}{4})}U\left(-a,-iz\right)}}
\paraV@{a}{z} = \frac{+ i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}
( 1 2 - a ) > 0 1 2 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{1}{2}-a)>0}}
CylinderV(a, z) = (+ I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z)
Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[+ I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]
Failure Failure Successful [Tested: 21]
Failed [21 / 21]
Result: Plus[Complex[0.4621744673825599, -0.4396081381451897], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.0415095884926797, 0.5968092652227891], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data