11.9: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/11.9.E1 11.9.E1] || [[Item:Q4008|<math>\deriv[2]{w}{z}+\frac{1}{z}\deriv{w}{z}+\left(1-\frac{\nu^{2}}{z^{2}}\right)w = z^{\mu-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\frac{1}{z}\deriv{w}{z}+\left(1-\frac{\nu^{2}}{z^{2}}\right)w = z^{\mu-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+(1)/(z)*diff(w, z)+(1 -((nu)^(2))/((z)^(2)))*w = (z)^(mu - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+Divide[1,z]*D[w, z]+(1 -Divide[\[Nu]^(2),(z)^(2)])*w == (z)^(\[Mu]- 1)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.7677724761+.5394693872e-1*I
| [https://dlmf.nist.gov/11.9.E1 11.9.E1] || <math qid="Q4008">\deriv[2]{w}{z}+\frac{1}{z}\deriv{w}{z}+\left(1-\frac{\nu^{2}}{z^{2}}\right)w = z^{\mu-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\frac{1}{z}\deriv{w}{z}+\left(1-\frac{\nu^{2}}{z^{2}}\right)w = z^{\mu-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+(1)/(z)*diff(w, z)+(1 -((nu)^(2))/((z)^(2)))*w = (z)^(mu - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+Divide[1,z]*D[w, z]+(1 -Divide[\[Nu]^(2),(z)^(2)])*w == (z)^(\[Mu]- 1)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.7677724761+.5394693872e-1*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.394855253+1.097179568*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.394855253+1.097179568*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.7677724760456721, 0.053946938885231305]
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.7677724760456721, 0.053946938885231305]
Line 20: Line 20:
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/11.9.E2 11.9.E2] || [[Item:Q4009|<math>w = \Lommels{\mu}{\nu}@{z}+A\BesselJ{\nu}@{z}+B\BesselY{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Lommels{\mu}{\nu}@{z}+A\BesselJ{\nu}@{z}+B\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>w = LommelS1(mu, nu, z)+ A*BesselJ(nu, z)+ B*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9752372341+.4710119144*I
| [https://dlmf.nist.gov/11.9.E2 11.9.E2] || <math qid="Q4009">w = \Lommels{\mu}{\nu}@{z}+A\BesselJ{\nu}@{z}+B\BesselY{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Lommels{\mu}{\nu}@{z}+A\BesselJ{\nu}@{z}+B\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>w = LommelS1(mu, nu, z)+ A*BesselJ(nu, z)+ B*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9752372341+.4710119144*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.486411080-.4774576789*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.486411080-.4774576789*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || -
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || -
|-  
|-  
| [https://dlmf.nist.gov/11.9.E3 11.9.E3] || [[Item:Q4010|<math>\Lommels{\mu}{\nu}@{z} = z^{\mu+1}\sum_{k=0}^{\infty}(-1)^{k}\frac{z^{2k}}{a_{k+1}(\mu,\nu)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{\nu}@{z} = z^{\mu+1}\sum_{k=0}^{\infty}(-1)^{k}\frac{z^{2k}}{a_{k+1}(\mu,\nu)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LommelS1(mu, nu, z) = (z)^(mu + 1)* sum((- 1)^(k)*((z)^(2*k))/(a[k + 1](mu , nu)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Error || -
| [https://dlmf.nist.gov/11.9.E3 11.9.E3] || <math qid="Q4010">\Lommels{\mu}{\nu}@{z} = z^{\mu+1}\sum_{k=0}^{\infty}(-1)^{k}\frac{z^{2k}}{a_{k+1}(\mu,\nu)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{\nu}@{z} = z^{\mu+1}\sum_{k=0}^{\infty}(-1)^{k}\frac{z^{2k}}{a_{k+1}(\mu,\nu)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LommelS1(mu, nu, z) = (z)^(mu + 1)* sum((- 1)^(k)*((z)^(2*k))/(a[k + 1](mu , nu)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Error || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/11.9.E4 11.9.E4] || [[Item:Q4011|<math>a_{k}(\mu,\nu) = \prod_{m=1}^{k}\left((\mu+2m-1)^{2}-\nu^{2}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{k}(\mu,\nu) = \prod_{m=1}^{k}\left((\mu+2m-1)^{2}-\nu^{2}\right)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[k](mu , nu) = product((mu + 2*m - 1)^(2)- (nu)^(2), m = 1..k)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, k][\[Mu], \[Nu]] == Product[(\[Mu]+ 2*m - 1)^(2)- \[Nu]^(2), {m, 1, k}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/11.9.E4 11.9.E4] || <math qid="Q4011">a_{k}(\mu,\nu) = \prod_{m=1}^{k}\left((\mu+2m-1)^{2}-\nu^{2}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{k}(\mu,\nu) = \prod_{m=1}^{k}\left((\mu+2m-1)^{2}-\nu^{2}\right)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[k](mu , nu) = product((mu + 2*m - 1)^(2)- (nu)^(2), m = 1..k)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, k][\[Mu], \[Nu]] == Product[(\[Mu]+ 2*m - 1)^(2)- \[Nu]^(2), {m, 1, k}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/11.9.E5 11.9.E5] || [[Item:Q4012|<math>\LommelS{\mu}{\nu}@{z} = \Lommels{\mu}{\nu}@{z}+2^{\mu-1}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\*\left(\sin@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselJ{\nu}@{z}-\cos@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselY{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LommelS{\mu}{\nu}@{z} = \Lommels{\mu}{\nu}@{z}+2^{\mu-1}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\*\left(\sin@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselJ{\nu}@{z}-\cos@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>LommelS2(mu, nu, z) = LommelS1(mu, nu, z)+ (2)^(mu - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*(sin((1)/(2)*(mu - nu)*Pi)*BesselJ(nu, z)- cos((1)/(2)*(mu - nu)*Pi)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
| [https://dlmf.nist.gov/11.9.E5 11.9.E5] || <math qid="Q4012">\LommelS{\mu}{\nu}@{z} = \Lommels{\mu}{\nu}@{z}+2^{\mu-1}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\*\left(\sin@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselJ{\nu}@{z}-\cos@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselY{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LommelS{\mu}{\nu}@{z} = \Lommels{\mu}{\nu}@{z}+2^{\mu-1}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\*\left(\sin@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselJ{\nu}@{z}-\cos@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>LommelS2(mu, nu, z) = LommelS1(mu, nu, z)+ (2)^(mu - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*(sin((1)/(2)*(mu - nu)*Pi)*BesselJ(nu, z)- cos((1)/(2)*(mu - nu)*Pi)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/11.9#Ex1 11.9#Ex1] || [[Item:Q4013|<math>\Lommels{\mu}{-\nu}@{z} = \Lommels{\mu}{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{-\nu}@{z} = \Lommels{\mu}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LommelS1(mu, - nu, z) = LommelS1(mu, nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
| [https://dlmf.nist.gov/11.9#Ex1 11.9#Ex1] || <math qid="Q4013">\Lommels{\mu}{-\nu}@{z} = \Lommels{\mu}{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{-\nu}@{z} = \Lommels{\mu}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LommelS1(mu, - nu, z) = LommelS1(mu, nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/11.9#Ex2 11.9#Ex2] || [[Item:Q4014|<math>\LommelS{\mu}{-\nu}@{z} = \LommelS{\mu}{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LommelS{\mu}{-\nu}@{z} = \LommelS{\mu}{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}(-\nu)+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}(-\nu)+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>LommelS2(mu, - nu, z) = LommelS2(mu, nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
| [https://dlmf.nist.gov/11.9#Ex2 11.9#Ex2] || <math qid="Q4014">\LommelS{\mu}{-\nu}@{z} = \LommelS{\mu}{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LommelS{\mu}{-\nu}@{z} = \LommelS{\mu}{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}(-\nu)+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}(-\nu)+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>LommelS2(mu, - nu, z) = LommelS2(mu, nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/11.9.E7 11.9.E7] || [[Item:Q4015|<math>\Lommels{\mu}{\nu}@{z} = 2^{\mu+1}\sum_{k=0}^{\infty}\*\frac{(2k+\mu+1)\EulerGamma@{k+\mu+1}}{k!(2k+\mu-\nu+1)(2k+\mu+\nu+1)}\BesselJ{2k+\mu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{\nu}@{z} = 2^{\mu+1}\sum_{k=0}^{\infty}\*\frac{(2k+\mu+1)\EulerGamma@{k+\mu+1}}{k!(2k+\mu-\nu+1)(2k+\mu+\nu+1)}\BesselJ{2k+\mu+1}@{z}</syntaxhighlight> || <math>\realpart@@{((2k+\mu+1)+k+1)} > 0, \realpart@@{(k+\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>LommelS1(mu, nu, z) = (2)^(mu + 1)* sum(*((2*k + mu + 1)*GAMMA(k + mu + 1))/(factorial(k)*(2*k + mu - nu + 1)*(2*k + mu + nu + 1))*BesselJ(2*k + mu + 1, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || -
| [https://dlmf.nist.gov/11.9.E7 11.9.E7] || <math qid="Q4015">\Lommels{\mu}{\nu}@{z} = 2^{\mu+1}\sum_{k=0}^{\infty}\*\frac{(2k+\mu+1)\EulerGamma@{k+\mu+1}}{k!(2k+\mu-\nu+1)(2k+\mu+\nu+1)}\BesselJ{2k+\mu+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{\nu}@{z} = 2^{\mu+1}\sum_{k=0}^{\infty}\*\frac{(2k+\mu+1)\EulerGamma@{k+\mu+1}}{k!(2k+\mu-\nu+1)(2k+\mu+\nu+1)}\BesselJ{2k+\mu+1}@{z}</syntaxhighlight> || <math>\realpart@@{((2k+\mu+1)+k+1)} > 0, \realpart@@{(k+\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>LommelS1(mu, nu, z) = (2)^(mu + 1)* sum(*((2*k + mu + 1)*GAMMA(k + mu + 1))/(factorial(k)*(2*k + mu - nu + 1)*(2*k + mu + nu + 1))*BesselJ(2*k + mu + 1, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/11.9.E8 11.9.E8] || [[Item:Q4016|<math>\Lommels{\mu}{\nu}@{z} = 2^{(\mu+\nu-1)/2}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}z^{(\mu+1-\nu)/2}\*\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(2k+\mu-\nu+1)}\BesselJ{k+\frac{1}{2}(\mu+\nu+1)}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{\nu}@{z} = 2^{(\mu+\nu-1)/2}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}z^{(\mu+1-\nu)/2}\*\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(2k+\mu-\nu+1)}\BesselJ{k+\frac{1}{2}(\mu+\nu+1)}@{z}</syntaxhighlight> || <math>\realpart@@{((k+\frac{1}{2}(\mu+\nu+1))+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>LommelS1(mu, nu, z) = (2)^((mu + nu - 1)/2)* GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*(z)^((mu + 1 - nu)/2)* sum((((1)/(2)*z)^(k))/(factorial(k)*(2*k + mu - nu + 1))*BesselJ(k +(1)/(2)*(mu + nu + 1), z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Skipped - Because timed out || -
| [https://dlmf.nist.gov/11.9.E8 11.9.E8] || <math qid="Q4016">\Lommels{\mu}{\nu}@{z} = 2^{(\mu+\nu-1)/2}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}z^{(\mu+1-\nu)/2}\*\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(2k+\mu-\nu+1)}\BesselJ{k+\frac{1}{2}(\mu+\nu+1)}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Lommels{\mu}{\nu}@{z} = 2^{(\mu+\nu-1)/2}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}z^{(\mu+1-\nu)/2}\*\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(2k+\mu-\nu+1)}\BesselJ{k+\frac{1}{2}(\mu+\nu+1)}@{z}</syntaxhighlight> || <math>\realpart@@{((k+\frac{1}{2}(\mu+\nu+1))+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>LommelS1(mu, nu, z) = (2)^((mu + nu - 1)/2)* GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*(z)^((mu + 1 - nu)/2)* sum((((1)/(2)*z)^(k))/(factorial(k)*(2*k + mu - nu + 1))*BesselJ(k +(1)/(2)*(mu + nu + 1), z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Skipped - Because timed out || -
|}
|}
</div>
</div>

Latest revision as of 11:29, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
11.9.E1 d 2 w d z 2 + 1 z d w d z + ( 1 - ν 2 z 2 ) w = z μ - 1 derivative 𝑤 𝑧 2 1 𝑧 derivative 𝑤 𝑧 1 superscript 𝜈 2 superscript 𝑧 2 𝑤 superscript 𝑧 𝜇 1 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\frac{% 1}{z}\frac{\mathrm{d}w}{\mathrm{d}z}+\left(1-\frac{\nu^{2}}{z^{2}}\right)w=z^{% \mu-1}}}
\deriv[2]{w}{z}+\frac{1}{z}\deriv{w}{z}+\left(1-\frac{\nu^{2}}{z^{2}}\right)w = z^{\mu-1}

diff(w, [z$(2)])+(1)/(z)*diff(w, z)+(1 -((nu)^(2))/((z)^(2)))*w = (z)^(mu - 1)
D[w, {z, 2}]+Divide[1,z]*D[w, z]+(1 -Divide[\[Nu]^(2),(z)^(2)])*w == (z)^(\[Mu]- 1)
Failure Failure
Failed [300 / 300]
Result: -.7677724761+.5394693872e-1*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.394855253+1.097179568*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.7677724760456721, 0.053946938885231305]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.9642783315232053, 1.0539469388852312]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
11.9.E2 w = s μ , ν ( z ) + A J ν ( z ) + B Y ν ( z ) 𝑤 Lommel-s 𝜇 𝜈 𝑧 𝐴 Bessel-J 𝜈 𝑧 𝐵 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle w=s_{{\mu},{\nu}}\left(z\right)+AJ_{\nu}\left(z% \right)+BY_{\nu}\left(z\right)}}
w = \Lommels{\mu}{\nu}@{z}+A\BesselJ{\nu}@{z}+B\BesselY{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
w = LommelS1(mu, nu, z)+ A*BesselJ(nu, z)+ B*BesselY(nu, z)
Error
Failure Missing Macro Error
Failed [300 / 300]
Result: .9752372341+.4710119144*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.486411080-.4774576789*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
-
11.9.E3 s μ , ν ( z ) = z μ + 1 k = 0 ( - 1 ) k z 2 k a k + 1 ( μ , ν ) Lommel-s 𝜇 𝜈 𝑧 superscript 𝑧 𝜇 1 superscript subscript 𝑘 0 superscript 1 𝑘 superscript 𝑧 2 𝑘 subscript 𝑎 𝑘 1 𝜇 𝜈 {\displaystyle{\displaystyle s_{{\mu},{\nu}}\left(z\right)=z^{\mu+1}\sum_{k=0}% ^{\infty}(-1)^{k}\frac{z^{2k}}{a_{k+1}(\mu,\nu)}}}
\Lommels{\mu}{\nu}@{z} = z^{\mu+1}\sum_{k=0}^{\infty}(-1)^{k}\frac{z^{2k}}{a_{k+1}(\mu,\nu)}

LommelS1(mu, nu, z) = (z)^(mu + 1)* sum((- 1)^(k)*((z)^(2*k))/(a[k + 1](mu , nu)), k = 0..infinity)
Error
Failure Missing Macro Error Error -
11.9.E4 a k ( μ , ν ) = m = 1 k ( ( μ + 2 m - 1 ) 2 - ν 2 ) subscript 𝑎 𝑘 𝜇 𝜈 superscript subscript product 𝑚 1 𝑘 superscript 𝜇 2 𝑚 1 2 superscript 𝜈 2 {\displaystyle{\displaystyle a_{k}(\mu,\nu)=\prod_{m=1}^{k}\left((\mu+2m-1)^{2% }-\nu^{2}\right)}}
a_{k}(\mu,\nu) = \prod_{m=1}^{k}\left((\mu+2m-1)^{2}-\nu^{2}\right)

a[k](mu , nu) = product((mu + 2*m - 1)^(2)- (nu)^(2), m = 1..k)
Subscript[a, k][\[Mu], \[Nu]] == Product[(\[Mu]+ 2*m - 1)^(2)- \[Nu]^(2), {m, 1, k}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
11.9.E5 S μ , ν ( z ) = s μ , ν ( z ) + 2 μ - 1 Γ ( 1 2 μ + 1 2 ν + 1 2 ) Γ ( 1 2 μ - 1 2 ν + 1 2 ) ( sin ( 1 2 ( μ - ν ) π ) J ν ( z ) - cos ( 1 2 ( μ - ν ) π ) Y ν ( z ) ) Lommel-S 𝜇 𝜈 𝑧 Lommel-s 𝜇 𝜈 𝑧 superscript 2 𝜇 1 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 1 2 𝜇 𝜈 𝜋 Bessel-J 𝜈 𝑧 1 2 𝜇 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle S_{{\mu},{\nu}}\left(z\right)=s_{{\mu},{\nu}}% \left(z\right)+2^{\mu-1}\Gamma\left(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{% 2}\right)\Gamma\left(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}\right)\*% \left(\sin\left(\tfrac{1}{2}(\mu-\nu)\pi\right)\,J_{\nu}\left(z\right)-\cos% \left(\tfrac{1}{2}(\mu-\nu)\pi\right)\,Y_{\nu}\left(z\right)\right)}}
\LommelS{\mu}{\nu}@{z} = \Lommels{\mu}{\nu}@{z}+2^{\mu-1}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\*\left(\sin@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselJ{\nu}@{z}-\cos@{\tfrac{1}{2}(\mu-\nu)\pi}\,\BesselY{\nu}@{z}\right)
( ν + k + 1 ) > 0 , ( 1 2 μ + 1 2 ν + 1 2 ) > 0 , ( 1 2 μ - 1 2 ν + 1 2 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu% +\tfrac{1}{2})>0,\Re(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})>0,\Re((-\nu% )+k+1)>0}}
LommelS2(mu, nu, z) = LommelS1(mu, nu, z)+ (2)^(mu - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*(sin((1)/(2)*(mu - nu)*Pi)*BesselJ(nu, z)- cos((1)/(2)*(mu - nu)*Pi)*BesselY(nu, z))
Error
Successful Missing Macro Error - -
11.9#Ex1 s μ , - ν ( z ) = s μ , ν ( z ) Lommel-s 𝜇 𝜈 𝑧 Lommel-s 𝜇 𝜈 𝑧 {\displaystyle{\displaystyle s_{{\mu},{-\nu}}\left(z\right)=s_{{\mu},{\nu}}% \left(z\right)}}
\Lommels{\mu}{-\nu}@{z} = \Lommels{\mu}{\nu}@{z}

LommelS1(mu, - nu, z) = LommelS1(mu, nu, z)
Error
Successful Missing Macro Error - -
11.9#Ex2 S μ , - ν ( z ) = S μ , ν ( z ) Lommel-S 𝜇 𝜈 𝑧 Lommel-S 𝜇 𝜈 𝑧 {\displaystyle{\displaystyle S_{{\mu},{-\nu}}\left(z\right)=S_{{\mu},{\nu}}% \left(z\right)}}
\LommelS{\mu}{-\nu}@{z} = \LommelS{\mu}{\nu}@{z}
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 μ + 1 2 ( - ν ) + 1 2 ) > 0 , ( 1 2 μ + 1 2 ν + 1 2 ) > 0 , ( 1 2 μ - 1 2 ( - ν ) + 1 2 ) > 0 , ( 1 2 μ - 1 2 ν + 1 2 ) > 0 , ( ( - ( - ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0,\Re(\tfrac{1}{2}% \mu+\tfrac{1}{2}(-\nu)+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+% \tfrac{1}{2})>0,\Re(\tfrac{1}{2}\mu-\tfrac{1}{2}(-\nu)+\tfrac{1}{2})>0,\Re(% \tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})>0,\Re((-(-\nu))+k+1)>0}}
LommelS2(mu, - nu, z) = LommelS2(mu, nu, z)
Error
Successful Missing Macro Error - -
11.9.E7 s μ , ν ( z ) = 2 μ + 1 k = 0 ( 2 k + μ + 1 ) Γ ( k + μ + 1 ) k ! ( 2 k + μ - ν + 1 ) ( 2 k + μ + ν + 1 ) J 2 k + μ + 1 ( z ) Lommel-s 𝜇 𝜈 𝑧 superscript 2 𝜇 1 superscript subscript 𝑘 0 2 𝑘 𝜇 1 Euler-Gamma 𝑘 𝜇 1 𝑘 2 𝑘 𝜇 𝜈 1 2 𝑘 𝜇 𝜈 1 Bessel-J 2 𝑘 𝜇 1 𝑧 {\displaystyle{\displaystyle s_{{\mu},{\nu}}\left(z\right)=2^{\mu+1}\sum_{k=0}% ^{\infty}\*\frac{(2k+\mu+1)\Gamma\left(k+\mu+1\right)}{k!(2k+\mu-\nu+1)(2k+\mu% +\nu+1)}J_{2k+\mu+1}\left(z\right)}}
\Lommels{\mu}{\nu}@{z} = 2^{\mu+1}\sum_{k=0}^{\infty}\*\frac{(2k+\mu+1)\EulerGamma@{k+\mu+1}}{k!(2k+\mu-\nu+1)(2k+\mu+\nu+1)}\BesselJ{2k+\mu+1}@{z}
( ( 2 k + μ + 1 ) + k + 1 ) > 0 , ( k + μ + 1 ) > 0 formulae-sequence 2 𝑘 𝜇 1 𝑘 1 0 𝑘 𝜇 1 0 {\displaystyle{\displaystyle\Re((2k+\mu+1)+k+1)>0,\Re(k+\mu+1)>0}}
LommelS1(mu, nu, z) = (2)^(mu + 1)* sum(*((2*k + mu + 1)*GAMMA(k + mu + 1))/(factorial(k)*(2*k + mu - nu + 1)*(2*k + mu + nu + 1))*BesselJ(2*k + mu + 1, z), k = 0..infinity)
Error
Error Missing Macro Error - -
11.9.E8 s μ , ν ( z ) = 2 ( μ + ν - 1 ) / 2 Γ ( 1 2 μ + 1 2 ν + 1 2 ) z ( μ + 1 - ν ) / 2 k = 0 ( 1 2 z ) k k ! ( 2 k + μ - ν + 1 ) J k + 1 2 ( μ + ν + 1 ) ( z ) Lommel-s 𝜇 𝜈 𝑧 superscript 2 𝜇 𝜈 1 2 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 superscript 𝑧 𝜇 1 𝜈 2 superscript subscript 𝑘 0 superscript 1 2 𝑧 𝑘 𝑘 2 𝑘 𝜇 𝜈 1 Bessel-J 𝑘 1 2 𝜇 𝜈 1 𝑧 {\displaystyle{\displaystyle s_{{\mu},{\nu}}\left(z\right)=2^{(\mu+\nu-1)/2}% \Gamma\left(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}\right)z^{(\mu+1-\nu)/% 2}\*\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(2k+\mu-\nu+1)}J_{k+\frac{% 1}{2}(\mu+\nu+1)}\left(z\right)}}
\Lommels{\mu}{\nu}@{z} = 2^{(\mu+\nu-1)/2}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}z^{(\mu+1-\nu)/2}\*\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(2k+\mu-\nu+1)}\BesselJ{k+\frac{1}{2}(\mu+\nu+1)}@{z}
( ( k + 1 2 ( μ + ν + 1 ) ) + k + 1 ) > 0 , ( 1 2 μ + 1 2 ν + 1 2 ) > 0 formulae-sequence 𝑘 1 2 𝜇 𝜈 1 𝑘 1 0 1 2 𝜇 1 2 𝜈 1 2 0 {\displaystyle{\displaystyle\Re((k+\frac{1}{2}(\mu+\nu+1))+k+1)>0,\Re(\tfrac{1% }{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})>0}}
LommelS1(mu, nu, z) = (2)^((mu + nu - 1)/2)* GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*(z)^((mu + 1 - nu)/2)* sum((((1)/(2)*z)^(k))/(factorial(k)*(2*k + mu - nu + 1))*BesselJ(k +(1)/(2)*(mu + nu + 1), z), k = 0..infinity)
Error
Failure Missing Macro Error Skipped - Because timed out -