10.50: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.50#Ex1 10.50#Ex1] || [[Item:Q3728|<math>\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{SphericalBesselJ[n, z], SphericalBesselY[n, z]}, z] == (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.50#Ex1 10.50#Ex1] || <math qid="Q3728">\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{SphericalBesselJ[n, z], SphericalBesselY[n, z]}, z] == (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.50#Ex2 10.50#Ex2] || [[Item:Q3729|<math>\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{SphericalHankelH1[n, z], SphericalHankelH2[n, z]}, z] == - 2*I*(z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.50#Ex2 10.50#Ex2] || <math qid="Q3729">\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{SphericalHankelH1[n, z], SphericalHankelH2[n, z]}, z] == - 2*I*(z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.50#Ex3 10.50#Ex3] || [[Item:Q3730|<math>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]}, z] == (- 1)^(n + 1)* (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5000000000000001, 0.8660254037844386]
| [https://dlmf.nist.gov/10.50#Ex3 10.50#Ex3] || <math qid="Q3730">\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]}, z] == (- 1)^(n + 1)* (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5000000000000001, -0.8660254037844386]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5000000000000001, -0.8660254037844386]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.50#Ex4 10.50#Ex4] || [[Item:Q3731|<math>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5384915109869794, 1.7026856201657974]
| [https://dlmf.nist.gov/10.50#Ex4 10.50#Ex4] || <math qid="Q3731">\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5384915109869794, 1.7026856201657974]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.6544302063904848, -2.4451654315616667]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.6544302063904848, -2.4451654315616667]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.50#Ex4 10.50#Ex4] || [[Item:Q3731|<math>\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == -Divide[1,2]*Pi*(z)^(- 2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5161524079039588, -2.211692333258562]
| [https://dlmf.nist.gov/10.50#Ex4 10.50#Ex4] || <math qid="Q3731">\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == -Divide[1,2]*Pi*(z)^(- 2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5161524079039588, -2.211692333258562]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[7.686727830477982, 4.996906619076774]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[7.686727830477982, 4.996906619076774]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.50#Ex5 10.50#Ex5] || [[Item:Q3732|<math>\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}</syntaxhighlight> || <math>\realpart@@{(((n+1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+1)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+1)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+1)+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n + 1, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 1, z] == (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.50#Ex5 10.50#Ex5] || <math qid="Q3732">\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}</syntaxhighlight> || <math>\realpart@@{(((n+1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+1)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+1)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+1)+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n + 1, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 1, z] == (z)^(- 2)</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.50#Ex6 10.50#Ex6] || [[Item:Q3733|<math>\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}</syntaxhighlight> || <math>\realpart@@{(((n+2)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+2)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+2)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+2)+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n + 2, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 2, z] == (2*n + 3)*(z)^(- 3)</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.50#Ex6 10.50#Ex6] || <math qid="Q3733">\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}</syntaxhighlight> || <math>\realpart@@{(((n+2)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+2)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+2)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+2)+\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n + 2, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 2, z] == (2*n + 3)*(z)^(- 3)</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.50.E4 10.50.E4] || [[Item:Q3734|<math>\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}</syntaxhighlight> || <math>\realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[0, z]*SphericalBesselJ[n, z]+ SphericalBesselY[0, z]*SphericalBesselY[n, z] == Cos[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Sin[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 3)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.50.E4 10.50.E4] || <math qid="Q3734">\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}</syntaxhighlight> || <math>\realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, k \geq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[0, z]*SphericalBesselJ[n, z]+ SphericalBesselY[0, z]*SphericalBesselY[n, z] == Cos[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Sin[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 3)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 11:27, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.50#Ex1 𝒲 { 𝗃 n ( z ) , 𝗒 n ( z ) } = z - 2 Wronskian spherical-Bessel-J 𝑛 𝑧 spherical-Bessel-Y 𝑛 𝑧 superscript 𝑧 2 {\displaystyle{\displaystyle\mathscr{W}\left\{\mathsf{j}_{n}\left(z\right),% \mathsf{y}_{n}\left(z\right)\right\}=z^{-2}}}
\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}
( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 , ( ( - ( n + 1 2 ) ) + k + 1 ) > 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+% 1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0,\Re((-(n+\frac{1}{2}))+k+1)>0}}
Error
Wronskian[{SphericalBesselJ[n, z], SphericalBesselY[n, z]}, z] == (z)^(- 2)
Missing Macro Error Successful - Successful [Tested: 21]
10.50#Ex2 𝒲 { 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) } = - 2 i z - 2 Wronskian spherical-Hankel-H-1-Bessel-third-kind 𝑛 𝑧 spherical-Hankel-H-2-Bessel-third-kind 𝑛 𝑧 2 𝑖 superscript 𝑧 2 {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathsf{h}^{(1)}_{n}}\left(z% \right),{\mathsf{h}^{(2)}_{n}}\left(z\right)\right\}=-2iz^{-2}}}
\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}

Error
Wronskian[{SphericalHankelH1[n, z], SphericalHankelH2[n, z]}, z] == - 2*I*(z)^(- 2)
Missing Macro Error Successful - Successful [Tested: 21]
10.50#Ex3 𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) } = ( - 1 ) n + 1 z - 2 Wronskian spherical-Bessel-I-1 𝑛 𝑧 spherical-Bessel-I-2 𝑛 𝑧 superscript 1 𝑛 1 superscript 𝑧 2 {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathsf{i}^{(1)}_{n}}\left(z% \right),{\mathsf{i}^{(2)}_{n}}\left(z\right)\right\}=(-1)^{n+1}z^{-2}}}
\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}
( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+% 1)>0}}
Error
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]}, z] == (- 1)^(n + 1)* (z)^(- 2)
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5000000000000001, -0.8660254037844386]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.50#Ex4 𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) } = 𝒲 { 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) } Wronskian spherical-Bessel-I-1 𝑛 𝑧 spherical-Bessel-K 𝑛 𝑧 Wronskian spherical-Bessel-I-2 𝑛 𝑧 spherical-Bessel-K 𝑛 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathsf{i}^{(1)}_{n}}\left(z% \right),\mathsf{k}_{n}\left(z\right)\right\}=\mathscr{W}\left\{{\mathsf{i}^{(2% )}_{n}}\left(z\right),\mathsf{k}_{n}\left(z\right)\right\}\\ }}
\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\
( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+% 1)>0}}
Error
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.5384915109869794, 1.7026856201657974]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.6544302063904848, -2.4451654315616667]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.50#Ex4 𝒲 { 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) } = - 1 2 π z - 2 Wronskian spherical-Bessel-I-2 𝑛 𝑧 spherical-Bessel-K 𝑛 𝑧 1 2 𝜋 superscript 𝑧 2 {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathsf{i}^{(2)}_{n}}\left(z% \right),\mathsf{k}_{n}\left(z\right)\right\}\\ =-\tfrac{1}{2}\pi z^{-2}}}
\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}
( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+% 1)>0}}
Error
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == -Divide[1,2]*Pi*(z)^(- 2)
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.5161524079039588, -2.211692333258562]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[7.686727830477982, 4.996906619076774]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.50#Ex5 𝗃 n + 1 ( z ) 𝗒 n ( z ) - 𝗃 n ( z ) 𝗒 n + 1 ( z ) = z - 2 spherical-Bessel-J 𝑛 1 𝑧 spherical-Bessel-Y 𝑛 𝑧 spherical-Bessel-J 𝑛 𝑧 spherical-Bessel-Y 𝑛 1 𝑧 superscript 𝑧 2 {\displaystyle{\displaystyle\mathsf{j}_{n+1}\left(z\right)\mathsf{y}_{n}\left(% z\right)-\mathsf{j}_{n}\left(z\right)\mathsf{y}_{n+1}\left(z\right)=z^{-2}}}
\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}
( ( ( n + 1 ) + 1 2 ) + k + 1 ) > 0 , ( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - ( n + 1 ) - 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - ( n + 1 ) - 1 2 ) ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 , ( ( - ( n + 1 2 ) ) + k + 1 ) > 0 , ( ( - ( ( n + 1 ) + 1 2 ) ) + k + 1 ) > 0 formulae-sequence 𝑛 1 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re(((n+1)+\frac{1}{2})+k+1)>0,\Re((n+\frac{1}{2})% +k+1)>0,\Re((-(n+1)-\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+1)>0,\Re((-(-(n% +1)-\frac{1}{2}))+k+1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0,\Re((-(n+\frac{1}{2}))% +k+1)>0,\Re((-((n+1)+\frac{1}{2}))+k+1)>0}}
Error
SphericalBesselJ[n + 1, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 1, z] == (z)^(- 2)
Missing Macro Error Successful - Successful [Tested: 21]
10.50#Ex6 𝗃 n + 2 ( z ) 𝗒 n ( z ) - 𝗃 n ( z ) 𝗒 n + 2 ( z ) = ( 2 n + 3 ) z - 3 spherical-Bessel-J 𝑛 2 𝑧 spherical-Bessel-Y 𝑛 𝑧 spherical-Bessel-J 𝑛 𝑧 spherical-Bessel-Y 𝑛 2 𝑧 2 𝑛 3 superscript 𝑧 3 {\displaystyle{\displaystyle\mathsf{j}_{n+2}\left(z\right)\mathsf{y}_{n}\left(% z\right)-\mathsf{j}_{n}\left(z\right)\mathsf{y}_{n+2}\left(z\right)=(2n+3)z^{-% 3}}}
\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}
( ( ( n + 2 ) + 1 2 ) + k + 1 ) > 0 , ( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - ( n + 2 ) - 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - ( n + 2 ) - 1 2 ) ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 , ( ( - ( n + 1 2 ) ) + k + 1 ) > 0 , ( ( - ( ( n + 2 ) + 1 2 ) ) + k + 1 ) > 0 formulae-sequence 𝑛 2 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 2 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 2 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 2 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re(((n+2)+\frac{1}{2})+k+1)>0,\Re((n+\frac{1}{2})% +k+1)>0,\Re((-(n+2)-\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+1)>0,\Re((-(-(n% +2)-\frac{1}{2}))+k+1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0,\Re((-(n+\frac{1}{2}))% +k+1)>0,\Re((-((n+2)+\frac{1}{2}))+k+1)>0}}
Error
SphericalBesselJ[n + 2, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 2, z] == (2*n + 3)*(z)^(- 3)
Missing Macro Error Failure - Successful [Tested: 21]
10.50.E4 𝗃 0 ( z ) 𝗃 n ( z ) + 𝗒 0 ( z ) 𝗒 n ( z ) = cos ( 1 2 n π ) k = 0 n / 2 ( - 1 ) k a 2 k ( n + 1 2 ) z 2 k + 2 + sin ( 1 2 n π ) k = 0 ( n - 1 ) / 2 ( - 1 ) k a 2 k + 1 ( n + 1 2 ) z 2 k + 3 spherical-Bessel-J 0 𝑧 spherical-Bessel-J 𝑛 𝑧 spherical-Bessel-Y 0 𝑧 spherical-Bessel-Y 𝑛 𝑧 1 2 𝑛 𝜋 superscript subscript 𝑘 0 𝑛 2 superscript 1 𝑘 subscript 𝑎 2 𝑘 𝑛 1 2 superscript 𝑧 2 𝑘 2 1 2 𝑛 𝜋 superscript subscript 𝑘 0 𝑛 1 2 superscript 1 𝑘 subscript 𝑎 2 𝑘 1 𝑛 1 2 superscript 𝑧 2 𝑘 3 {\displaystyle{\displaystyle\mathsf{j}_{0}\left(z\right)\mathsf{j}_{n}\left(z% \right)+\mathsf{y}_{0}\left(z\right)\mathsf{y}_{n}\left(z\right)=\cos\left(% \tfrac{1}{2}n\pi\right)\sum_{k=0}^{\left\lfloor n/2\right\rfloor}(-1)^{k}\frac% {a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin\left(\tfrac{1}{2}n\pi\right)\sum_{k=0}% ^{\left\lfloor(n-1)/2\right\rfloor}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{% 2k+3}}}}
\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}
( ( 0 + 1 2 ) + k + 1 ) > 0 , ( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - 0 - 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - 0 - 1 2 ) ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 , ( ( - ( 0 + 1 2 ) ) + k + 1 ) > 0 , ( ( - ( n + 1 2 ) ) + k + 1 ) > 0 , k 1 formulae-sequence 0 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 0 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 0 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 0 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑘 1 {\displaystyle{\displaystyle\Re((0+\frac{1}{2})+k+1)>0,\Re((n+\frac{1}{2})+k+1% )>0,\Re((-0-\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+1)>0,\Re((-(-0-\frac{1}% {2}))+k+1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0,\Re((-(0+\frac{1}{2}))+k+1)>0,\Re(% (-(n+\frac{1}{2}))+k+1)>0,k\geq 1}}
Error
SphericalBesselJ[0, z]*SphericalBesselJ[n, z]+ SphericalBesselY[0, z]*SphericalBesselY[n, z] == Cos[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Sin[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 3)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out