10.22: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.22.E8 10.22.E8] || [[Item:Q3382|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..x) = 2*sum(BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == 2*Sum[BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 24]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.277492396
| [https://dlmf.nist.gov/10.22.E8 10.22.E8] || <math qid="Q3382">\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..x) = 2*sum(BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == 2*Sum[BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 24]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.277492396
Test Values: {nu = -1/2, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1653166018
Test Values: {nu = -1/2, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1653166018
Test Values: {nu = 1/2, x = 3/2}</syntaxhighlight><br></div></div> || Skipped - Because timed out
Test Values: {nu = 1/2, x = 3/2}</syntaxhighlight><br></div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || [[Item:Q3383|<math>\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*n, t), t = 0..x) = int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*n, t], {t, 0, x}, GenerateConditions->None] == Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || <math qid="Q3383">\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*n, t), t = 0..x) = int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*n, t], {t, 0, x}, GenerateConditions->None] == Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|-  
|-  
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || [[Item:Q3383|<math>\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || <math qid="Q3383">\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|-  
|-  
| [https://dlmf.nist.gov/10.22.E10 10.22.E10] || [[Item:Q3384|<math>\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..x) = (x)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))* sum(((nu + 2*k + 1)*GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)+ k))/(GAMMA((1)/(2)*nu +(1)/(2)*mu +(3)/(2)+ k))*BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (x)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]* Sum[Divide[(\[Nu]+ 2*k + 1)*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]+ k],Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]+ k]]*BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E10 10.22.E10] || <math qid="Q3384">\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..x) = (x)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))* sum(((nu + 2*k + 1)*GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)+ k))/(GAMMA((1)/(2)*nu +(1)/(2)*mu +(3)/(2)+ k))*BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (x)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]* Sum[Divide[(\[Nu]+ 2*k + 1)*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]+ k],Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]+ k]]*BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E11 10.22.E11] || [[Item:Q3385|<math>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = (1)/(2)*sum((Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselJ(k, x), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselJ[k, x], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.2622772441151432, Times[-0.5, NSum[Times[Power[0.75, k], BesselJ[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
| [https://dlmf.nist.gov/10.22.E11 10.22.E11] || <math qid="Q3385">\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = (1)/(2)*sum((Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselJ(k, x), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselJ[k, x], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.2622772441151432, Times[-0.5, NSum[Times[Power[0.75, k], BesselJ[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.03100698635091531, Times[-0.5, NSum[Times[Power[0.25, k], BesselJ[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.03100698635091531, Times[-0.5, NSum[Times[Power[0.25, k], BesselJ[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || [[Item:Q3386|<math>x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>x*int((1 - BesselJ(0, t))/(t), t = 0..x) = 2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || <math qid="Q3386">x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>x*int((1 - BesselJ(0, t))/(t), t = 0..x) = 2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || [[Item:Q3386|<math>2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{((2k+5)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity) = x - 2*BesselJ(1, x)+ 2*sum((2*k + 5)*(Psi(k + 3)- Psi(1)- 1)*BesselJ(2*k + 5, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] == x - 2*BesselJ[1, x]+ 2*Sum[(2*k + 5)*(PolyGamma[k + 3]- PolyGamma[1]- 1)*BesselJ[2*k + 5, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Successful [Tested: 3] || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || <math qid="Q3386">2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{((2k+5)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity) = x - 2*BesselJ(1, x)+ 2*sum((2*k + 5)*(Psi(k + 3)- Psi(1)- 1)*BesselJ(2*k + 5, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] == x - 2*BesselJ[1, x]+ 2*Sum[(2*k + 5)*(PolyGamma[k + 3]- PolyGamma[1]- 1)*BesselJ[2*k + 5, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Successful [Tested: 3] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E13 10.22.E13] || [[Item:Q3387|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E13 10.22.E13] || <math qid="Q3387">\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E14 10.22.E14] || [[Item:Q3388|<math>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*cos(2*mu*theta), theta = 0..Pi) = Pi*cos(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Cos[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E14 10.22.E14] || <math qid="Q3388">\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*cos(2*mu*theta), theta = 0..Pi) = Pi*cos(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Cos[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E15 10.22.E15] || [[Item:Q3389|<math>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*sin(2*mu*theta), theta = 0..Pi) = Pi*sin(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Sin[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Sin[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E15 10.22.E15] || <math qid="Q3389">\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*sin(2*mu*theta), theta = 0..Pi) = Pi*sin(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Sin[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Sin[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E16 10.22.E16] || [[Item:Q3390|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*(BesselJ(n, z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*(BesselJ[n, z])^(2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/10.22.E16 10.22.E16] || <math qid="Q3390">\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*(BesselJ(n, z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*(BesselJ[n, z])^(2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E17 10.22.E17] || [[Item:Q3391|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</syntaxhighlight> || <math>-\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{1}{2}, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0, \realpart@@{((\mu-\nu)+k+1)} > 0, \realpart@@{((-\mu-\nu)+k+1)} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*cot(2*nu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)-(1)/(2)*Pi*csc(2*nu*Pi)*BesselJ(mu - nu, z)*BesselJ(- mu - nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*Cot[2*\[Nu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]-Divide[1,2]*Pi*Csc[2*\[Nu]*Pi]*BesselJ[\[Mu]- \[Nu], z]*BesselJ[- \[Mu]- \[Nu], z]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E17 10.22.E17] || <math qid="Q3391">\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</syntaxhighlight> || <math>-\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{1}{2}, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0, \realpart@@{((\mu-\nu)+k+1)} > 0, \realpart@@{((-\mu-\nu)+k+1)} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*cot(2*nu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)-(1)/(2)*Pi*csc(2*nu*Pi)*BesselJ(mu - nu, z)*BesselJ(- mu - nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*Cot[2*\[Nu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]-Divide[1,2]*Pi*Csc[2*\[Nu]*Pi]*BesselJ[\[Mu]- \[Nu], z]*BesselJ[- \[Mu]- \[Nu], z]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.22.E18 10.22.E18] || [[Item:Q3392|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(n, z)*BesselY(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[n, z]*BesselY[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E18 10.22.E18] || <math qid="Q3392">\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(n, z)*BesselY(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[n, z]*BesselY[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E19 10.22.E19] || [[Item:Q3393|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (2)^(nu)* GAMMA(nu + 1)*(z)^(- nu - 1)* BesselJ(mu + nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(z)^(- \[Nu]- 1)* BesselJ[\[Mu]+ \[Nu]+ 1, z]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/10.22.E19 10.22.E19] || <math qid="Q3393">\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (2)^(nu)* GAMMA(nu + 1)*(z)^(- nu - 1)* BesselJ(mu + nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(z)^(- \[Nu]- 1)* BesselJ[\[Mu]+ \[Nu]+ 1, z]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 300]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E20 10.22.E20] || [[Item:Q3394|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*(BesselJ(mu, (1)/(2)*z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*(BesselJ[\[Mu], Divide[1,2]*z])^(2)</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 35]
| [https://dlmf.nist.gov/10.22.E20 10.22.E20] || <math qid="Q3394">\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*(BesselJ(mu, (1)/(2)*z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*(BesselJ[\[Mu], Divide[1,2]*z])^(2)</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 35]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E21 10.22.E21] || [[Item:Q3395|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{((-(\mu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*BesselJ(mu, (1)/(2)*z)*BesselY(mu, (1)/(2)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*BesselJ[\[Mu], Divide[1,2]*z]*BesselY[\[Mu], Divide[1,2]*z]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E21 10.22.E21] || <math qid="Q3395">\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{((-(\mu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*BesselJ(mu, (1)/(2)*z)*BesselY(mu, (1)/(2)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*BesselJ[\[Mu], Divide[1,2]*z]*BesselY[\[Mu], Divide[1,2]*z]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E22 10.22.E22] || [[Item:Q3396|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\frac{1}{2})+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\mu+\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2))*BesselJ(mu + nu +(1)/(2), z))/((8*Pi*z)^((1)/(2))* GAMMA(mu + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]*BesselJ[\[Mu]+ \[Nu]+Divide[1,2], z],(8*Pi*z)^(Divide[1,2])* Gamma[\[Mu]+ \[Nu]+ 1]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E22 10.22.E22] || <math qid="Q3396">\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\frac{1}{2})+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\mu+\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2))*BesselJ(mu + nu +(1)/(2), z))/((8*Pi*z)^((1)/(2))* GAMMA(mu + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]*BesselJ[\[Mu]+ \[Nu]+Divide[1,2], z],(8*Pi*z)^(Divide[1,2])* Gamma[\[Mu]+ \[Nu]+ 1]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E23 10.22.E23] || [[Item:Q3397|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</syntaxhighlight> || <math>\realpart@{\mu+\alpha} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\alpha)+k+1)} > 0, \realpart@@{(\mu+\alpha)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*alpha - 1)* sec(theta), theta = 0..(1)/(2)*Pi) = ((mu + nu + alpha)*GAMMA(mu + alpha)*(2)^(alpha - 1))/(nu*GAMMA(mu + 1)*(z)^(alpha))*BesselJ(mu + nu + alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Alpha]- 1)* Sec[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu]+ \[Alpha])*Gamma[\[Mu]+ \[Alpha]]*(2)^(\[Alpha]- 1),\[Nu]*Gamma[\[Mu]+ 1]*(z)^\[Alpha]]*BesselJ[\[Mu]+ \[Nu]+ \[Alpha], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E23 10.22.E23] || <math qid="Q3397">\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</syntaxhighlight> || <math>\realpart@{\mu+\alpha} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\alpha)+k+1)} > 0, \realpart@@{(\mu+\alpha)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*alpha - 1)* sec(theta), theta = 0..(1)/(2)*Pi) = ((mu + nu + alpha)*GAMMA(mu + alpha)*(2)^(alpha - 1))/(nu*GAMMA(mu + 1)*(z)^(alpha))*BesselJ(mu + nu + alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Alpha]- 1)* Sec[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu]+ \[Alpha])*Gamma[\[Mu]+ \[Alpha]]*(2)^(\[Alpha]- 1),\[Nu]*Gamma[\[Mu]+ 1]*(z)^\[Alpha]]*BesselJ[\[Mu]+ \[Nu]+ \[Alpha], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E24 10.22.E24] || [[Item:Q3398|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*cot(theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*(mu)^(- 1)* BesselJ(mu + nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*Cot[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*\[Mu]^(- 1)* BesselJ[\[Mu]+ \[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E24 10.22.E24] || <math qid="Q3398">\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*cot(theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*(mu)^(- 1)* BesselJ(mu + nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*Cot[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*\[Mu]^(- 1)* BesselJ[\[Mu]+ \[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.22.E25 10.22.E25] || [[Item:Q3399|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > \realpart@@{\mu}, \realpart@@{\mu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselI(nu, z*cos(theta))*(tan(theta))^(mu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA((1)/(2)*nu -(1)/(2)*mu)*((1)/(2)*z)^(mu))/(2*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))*BesselJ(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselI[\[Nu], z*Cos[\[Theta]]]*(Tan[\[Theta]])^(\[Mu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]*(Divide[1,2]*z)^\[Mu],2*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]*BesselJ[\[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E25 10.22.E25] || <math qid="Q3399">\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > \realpart@@{\mu}, \realpart@@{\mu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselI(nu, z*cos(theta))*(tan(theta))^(mu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA((1)/(2)*nu -(1)/(2)*mu)*((1)/(2)*z)^(mu))/(2*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))*BesselJ(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselI[\[Nu], z*Cos[\[Theta]]]*(Tan[\[Theta]])^(\[Mu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]*(Divide[1,2]*z)^\[Mu],2*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]*BesselJ[\[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E26 10.22.E26] || [[Item:Q3400|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselJ(nu, zeta*cos(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(nu + 1), theta = 0..(1)/(2)*Pi) = ((z)^(mu)* (zeta)^(nu)* BesselJ(mu + nu + 1, sqrt((zeta)^(2)+ (z)^(2))))/(((zeta)^(2)+ (z)^(2))^((1)/(2)*(mu + nu + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselJ[\[Nu], \[Zeta]*Cos[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(z)^\[Mu]* \[Zeta]^\[Nu]* BesselJ[\[Mu]+ \[Nu]+ 1, Sqrt[\[Zeta]^(2)+ (z)^(2)]],(\[Zeta]^(2)+ (z)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]+ 1))]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E26 10.22.E26] || <math qid="Q3400">\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselJ(nu, zeta*cos(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(nu + 1), theta = 0..(1)/(2)*Pi) = ((z)^(mu)* (zeta)^(nu)* BesselJ(mu + nu + 1, sqrt((zeta)^(2)+ (z)^(2))))/(((zeta)^(2)+ (z)^(2))^((1)/(2)*(mu + nu + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselJ[\[Nu], \[Zeta]*Cos[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(z)^\[Mu]* \[Zeta]^\[Nu]* BesselJ[\[Mu]+ \[Nu]+ 1, Sqrt[\[Zeta]^(2)+ (z)^(2)]],(\[Zeta]^(2)+ (z)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]+ 1))]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E27 10.22.E27] || [[Item:Q3401|<math>\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(nu - 1, t))^(2), t = 0..x) = 2*sum((nu + 2*k)*(BesselJ(nu + 2*k, x))^(2), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[\[Nu]- 1, t])^(2), {t, 0, x}, GenerateConditions->None] == 2*Sum[(\[Nu]+ 2*k)*(BesselJ[\[Nu]+ 2*k, x])^(2), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 15] || Successful [Tested: 15]
| [https://dlmf.nist.gov/10.22.E27 10.22.E27] || <math qid="Q3401">\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(nu - 1, t))^(2), t = 0..x) = 2*sum((nu + 2*k)*(BesselJ(nu + 2*k, x))^(2), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[\[Nu]- 1, t])^(2), {t, 0, x}, GenerateConditions->None] == 2*Sum[(\[Nu]+ 2*k)*(BesselJ[\[Nu]+ 2*k, x])^(2), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 15] || Successful [Tested: 15]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E28 10.22.E28] || [[Item:Q3402|<math>\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*((BesselJ(nu - 1, t))^(2)- (BesselJ(nu + 1, t))^(2)), t = 0..x) = 2*nu*(BesselJ(nu, x))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*((BesselJ[\[Nu]- 1, t])^(2)- (BesselJ[\[Nu]+ 1, t])^(2)), {t, 0, x}, GenerateConditions->None] == 2*\[Nu]*(BesselJ[\[Nu], x])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
| [https://dlmf.nist.gov/10.22.E28 10.22.E28] || <math qid="Q3402">\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*((BesselJ(nu - 1, t))^(2)- (BesselJ(nu + 1, t))^(2)), t = 0..x) = 2*nu*(BesselJ(nu, x))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*((BesselJ[\[Nu]- 1, t])^(2)- (BesselJ[\[Nu]+ 1, t])^(2)), {t, 0, x}, GenerateConditions->None] == 2*\[Nu]*(BesselJ[\[Nu], x])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E29 10.22.E29] || [[Item:Q3403|<math>\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(0, t))^(2), t = 0..x) = (1)/(2)*(x)^(2)*((BesselJ(0, x))^(2)+ (BesselJ(1, x))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[0, t])^(2), {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((BesselJ[0, x])^(2)+ (BesselJ[1, x])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/10.22.E29 10.22.E29] || <math qid="Q3403">\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(0, t))^(2), t = 0..x) = (1)/(2)*(x)^(2)*((BesselJ(0, x))^(2)+ (BesselJ(1, x))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[0, t])^(2), {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((BesselJ[0, x])^(2)+ (BesselJ[1, x])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || [[Item:Q3404|<math>\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(n, t)*BesselJ(n + 1, t), t = 0..x) = (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[n, t]*BesselJ[n + 1, t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.6308420033135872, DifferenceRoot[Function[{, }
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || <math qid="Q3404">\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(n, t)*BesselJ(n + 1, t), t = 0..x) = (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[n, t]*BesselJ[n + 1, t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.6308420033135872, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.9403627636501156, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.9403627636501156, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br></div></div>
Test Values: {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || [[Item:Q3404|<math>\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) = sum((BesselJ(k, x))^(2), k = n + 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] == Sum[(BesselJ[k, x])^(2), {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.6309837827773054, Times[-1.0, NSum[Power[BesselJ[k, 1.5], 2]
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || <math qid="Q3404">\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) = sum((BesselJ(k, x))^(2), k = n + 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] == Sum[(BesselJ[k, x])^(2), {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.6309837827773054, Times[-1.0, NSum[Power[BesselJ[k, 1.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]]], {Ru<syntaxhighlight lang=mathematica>Result: Plus[0.9403627895513045, Times[-1.0, NSum[Power[BesselJ[k, 0.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]]], {Ru<syntaxhighlight lang=mathematica>Result: Plus[0.9403627895513045, Times[-1.0, NSum[Power[BesselJ[k, 0.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E31 10.22.E31] || [[Item:Q3405|<math>\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = 2*sum((- 1)^(k)* BesselJ(mu + nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* BesselJ[\[Mu]+ \[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E31 10.22.E31] || <math qid="Q3405">\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = 2*sum((- 1)^(k)* BesselJ(mu + nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* BesselJ[\[Mu]+ \[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.22.E32 10.22.E32] || [[Item:Q3406|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</syntaxhighlight> || <math>-1 < \realpart@@{\nu}, \realpart@@{\nu} < 2, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((1-\nu)+k+1)} > 0, \realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(1 - nu, x - t), t = 0..x) = BesselJ(0, x)- cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[1 - \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == BesselJ[0, x]- Cos[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E32 10.22.E32] || <math qid="Q3406">\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</syntaxhighlight> || <math>-1 < \realpart@@{\nu}, \realpart@@{\nu} < 2, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((1-\nu)+k+1)} > 0, \realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(1 - nu, x - t), t = 0..x) = BesselJ(0, x)- cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[1 - \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == BesselJ[0, x]- Cos[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E33 10.22.E33] || [[Item:Q3407|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(- nu, x - t), t = 0..x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[- \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E33 10.22.E33] || <math qid="Q3407">\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(- nu, x - t), t = 0..x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[- \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E34 10.22.E34] || [[Item:Q3408|<math>\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = (BesselJ(mu + nu, x))/(mu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Divide[BesselJ[\[Mu]+ \[Nu], x],\[Mu]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E34 10.22.E34] || <math qid="Q3408">\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = (BesselJ(mu + nu, x))/(mu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Divide[BesselJ[\[Mu]+ \[Nu], x],\[Mu]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.22.E35 10.22.E35] || [[Item:Q3409|<math>\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, t)*BesselJ(nu, x - t))/(t*(x - t)), t = 0..x) = ((mu + nu)*BesselJ(mu + nu, x))/(mu*nu*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t],t*(x - t)], {t, 0, x}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu])*BesselJ[\[Mu]+ \[Nu], x],\[Mu]*\[Nu]*x]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E35 10.22.E35] || <math qid="Q3409">\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, t)*BesselJ(nu, x - t))/(t*(x - t)), t = 0..x) = ((mu + nu)*BesselJ(mu + nu, x))/(mu*nu*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t],t*(x - t)], {t, 0, x}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu])*BesselJ[\[Mu]+ \[Nu], x],\[Mu]*\[Nu]*x]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.22.E36 10.22.E36] || [[Item:Q3410|<math>\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{\nu} \geq 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+\alpha+2k)+k+1)} > 0, \realpart@@{(\alpha)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(alpha))*int((x - t)^(alpha - 1)* BesselJ(nu, t), t = 0..x) = (2)^(alpha)* sum((alpha[k])/(factorial(k))*BesselJ(nu + alpha + 2*k, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[\[Alpha]]]*Integrate[(x - t)^(\[Alpha]- 1)* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (2)^\[Alpha]* Sum[Divide[Subscript[\[Alpha], k],(k)!]*BesselJ[\[Nu]+ \[Alpha]+ 2*k, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E36 10.22.E36] || <math qid="Q3410">\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{\nu} \geq 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+\alpha+2k)+k+1)} > 0, \realpart@@{(\alpha)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(alpha))*int((x - t)^(alpha - 1)* BesselJ(nu, t), t = 0..x) = (2)^(alpha)* sum((alpha[k])/(factorial(k))*BesselJ(nu + alpha + 2*k, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[\[Alpha]]]*Integrate[(x - t)^(\[Alpha]- 1)* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (2)^\[Alpha]* Sum[Divide[Subscript[\[Alpha], k],(k)!]*BesselJ[\[Nu]+ \[Alpha]+ 2*k, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.22.E37 10.22.E37] || [[Item:Q3411|<math>\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, j[nu , ell]*t)*BesselJ(nu, j[nu , m]*t), t = 0..1) = (1)/(2)*(diff( BesselJ(nu, j[nu , ell]), j[nu , ell]$(1) ))^(2)* KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[j, \[Nu], m]*t], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(D[BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]], {Subscript[j, \[Nu], \[ScriptL]], 1}])^(2)* KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.22.E37 10.22.E37] || <math qid="Q3411">\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, j[nu , ell]*t)*BesselJ(nu, j[nu , m]*t), t = 0..1) = (1)/(2)*(diff( BesselJ(nu, j[nu , ell]), j[nu , ell]$(1) ))^(2)* KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[j, \[Nu], m]*t], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(D[BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]], {Subscript[j, \[Nu], \[ScriptL]], 1}])^(2)* KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 2], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[m, 1], Rule[ℓ, 2], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E38 10.22.E38] || [[Item:Q3412|<math>\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.22.E38 10.22.E38] || <math qid="Q3412">\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || [[Item:Q3413|<math>\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || <math qid="Q3413">\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || [[Item:Q3413|<math>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/10.22.E39 10.22.E39] || <math qid="Q3413">\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E40 10.22.E40] || [[Item:Q3414|<math>\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E40 10.22.E40] || <math qid="Q3414">\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E41 10.22.E41] || [[Item:Q3415|<math>\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 8]
| [https://dlmf.nist.gov/10.22.E41 10.22.E41] || <math qid="Q3415">\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 8]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E42 10.22.E42] || [[Item:Q3416|<math>\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 6]
| [https://dlmf.nist.gov/10.22.E42 10.22.E42] || <math qid="Q3416">\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 6]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E43 10.22.E43] || [[Item:Q3417|<math>\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/10.22.E43 10.22.E43] || <math qid="Q3417">\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E44 10.22.E44] || [[Item:Q3418|<math>\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5512405929316078, 0.2551977660147906]
| [https://dlmf.nist.gov/10.22.E44 10.22.E44] || <math qid="Q3418">\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi</syntaxhighlight> || <math>\realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5512405929316078, 0.2551977660147906]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.26217720344291356, -0.18052742798771904]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.26217720344291356, -0.18052742798771904]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E45 10.22.E45] || [[Item:Q3419|<math>\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</syntaxhighlight> || <math>1 < \realpart@@{\mu}, \realpart@@{\mu} < 3, \realpart@@{(0+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/10.22.E45 10.22.E45] || <math qid="Q3419">\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}</syntaxhighlight> || <math>1 < \realpart@@{\mu}, \realpart@@{\mu} < 3, \realpart@@{(0+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E46 10.22.E46] || [[Item:Q3420|<math>\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -1 < \realpart@@{\nu}, \realpart@@{\nu} < 2\realpart@@{\mu}+\tfrac{3}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E46 10.22.E46] || <math qid="Q3420">\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -1 < \realpart@@{\nu}, \realpart@@{\nu} < 2\realpart@@{\mu}+\tfrac{3}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E47 10.22.E47] || [[Item:Q3421|<math>\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{5}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E47 10.22.E47] || <math qid="Q3421">\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}</syntaxhighlight> || <math>a > 0, \realpart@@{b} > 0, -\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{5}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E48 10.22.E48] || [[Item:Q3422|<math>\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</syntaxhighlight> || <math>x > 0, \realpart@@{\nu} > -1, \realpart@@{\mu} > 2\realpart@@{\nu}+\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu-1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E48 10.22.E48] || <math qid="Q3422">\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}</syntaxhighlight> || <math>x > 0, \realpart@@{\nu} > -1, \realpart@@{\mu} > 2\realpart@@{\nu}+\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu-1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E49 10.22.E49] || [[Item:Q3423|<math>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 0]
| [https://dlmf.nist.gov/10.22.E49 10.22.E49] || <math qid="Q3423">\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]</syntaxhighlight> || Error || Aborted || - || Successful [Tested: 0]
|-  
|-  
| [https://dlmf.nist.gov/10.22.E50 10.22.E50] || [[Item:Q3424|<math>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</syntaxhighlight> || <math>\realpart@@{\mu} > |\realpart@@{\nu}|, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0, \realpart@@{(\mu-\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E50 10.22.E50] || <math qid="Q3424">\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}</syntaxhighlight> || <math>\realpart@@{\mu} > |\realpart@@{\nu}|, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0, \realpart@@{(\mu-\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E51 10.22.E51] || [[Item:Q3425|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [151 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.06577510728447342, -0.5886826409090221]
| [https://dlmf.nist.gov/10.22.E51 10.22.E51] || <math qid="Q3425">\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [151 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.06577510728447342, -0.5886826409090221]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.0556301041786353, -0.2359104145157832]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.0556301041786353, -0.2359104145157832]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E52 10.22.E52] || [[Item:Q3426|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E52 10.22.E52] || <math qid="Q3426">\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/10.22.E53 10.22.E53] || [[Item:Q3427|<math>\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</syntaxhighlight> || <math>|\realpart@@{\nu}| < \tfrac{1}{2}, \realpart@{p^{2}} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E53 10.22.E53] || <math qid="Q3427">\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)</syntaxhighlight> || <math>|\realpart@@{\nu}| < \tfrac{1}{2}, \realpart@{p^{2}} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E54 10.22.E54] || [[Item:Q3428|<math>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [246 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.07541885663346475, -0.6281916024632631]
| [https://dlmf.nist.gov/10.22.E54 10.22.E54] || <math qid="Q3428">\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [246 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.07541885663346475, -0.6281916024632631]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1002850405400357, -0.7734416454563844]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1002850405400357, -0.7734416454563844]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E55 10.22.E55] || [[Item:Q3429|<math>\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</syntaxhighlight> || <math>\nu+\ell+m > -1, \realpart@@{((\nu+2\ell+1)+k+1)} > 0, \realpart@@{((\nu+2m+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.22.E55 10.22.E55] || <math qid="Q3429">\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}</syntaxhighlight> || <math>\nu+\ell+m > -1, \realpart@@{((\nu+2\ell+1)+k+1)} > 0, \realpart@@{((\nu+2m+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 2], Rule[ℓ, 2], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[m, 2], Rule[ℓ, 2], Rule[ν, Rational[-3, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E56 10.22.E56] || [[Item:Q3430|<math>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</syntaxhighlight> || <math>0 < a, a < b, \realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.12507202091813296, -0.11002587193353452]
| [https://dlmf.nist.gov/10.22.E56 10.22.E56] || <math qid="Q3430">\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}</syntaxhighlight> || <math>0 < a, a < b, \realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.12507202091813296, -0.11002587193353452]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.017959797138118128, 0.3252875517547388]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.017959797138118128, 0.3252875517547388]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E57 10.22.E57] || [[Item:Q3431|<math>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\lambda)} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E57 10.22.E57] || <math qid="Q3431">\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\lambda)} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E58 10.22.E58] || [[Item:Q3432|<math>\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</syntaxhighlight> || <math>a \neq b, \realpart@{2\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [209 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.13393539357334844, 0.1322614378889556]
| [https://dlmf.nist.gov/10.22.E58 10.22.E58] || <math qid="Q3432">\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}</syntaxhighlight> || <math>a \neq b, \realpart@{2\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]</syntaxhighlight> || Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [209 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.13393539357334844, 0.1322614378889556]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.07230690300251369, -0.15068591568973605]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.07230690300251369, -0.15068591568973605]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.22.E66 10.22.E66] || [[Item:Q3440|<math>\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E66 10.22.E66] || <math qid="Q3440">\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E67 10.22.E67] || [[Item:Q3441|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || -
| [https://dlmf.nist.gov/10.22.E67 10.22.E67] || <math qid="Q3441">\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/10.22.E68 10.22.E68] || [[Item:Q3442|<math>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@{p^{2}} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || -
| [https://dlmf.nist.gov/10.22.E68 10.22.E68] || <math qid="Q3442">\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)</syntaxhighlight> || <math>\realpart@{p^{2}} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/10.22.E70 10.22.E70] || [[Item:Q3444|<math>\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</syntaxhighlight> || <math>a \geq b, b > 0, \realpart@@{\nu} > -\tfrac{3}{2}, \imagpart@@{z} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E70 10.22.E70] || <math qid="Q3444">\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}</syntaxhighlight> || <math>a \geq b, b > 0, \realpart@@{\nu} > -\tfrac{3}{2}, \imagpart@@{z} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.22.E71 10.22.E71] || [[Item:Q3445|<math>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, |b-c| < a, a < b+c, \cos@@{\phi} = (b^{2}+c^{2}-a^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]</syntaxhighlight> || Translation Error || Translation Error || - || -
| [https://dlmf.nist.gov/10.22.E71 10.22.E71] || <math qid="Q3445">\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, |b-c| < a, a < b+c, \cos@@{\phi} = (b^{2}+c^{2}-a^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/10.22.E72 10.22.E72] || [[Item:Q3446|<math>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, a > b+c, \cosh@@{\chi} = (a^{2}-b^{2}-c^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E72 10.22.E72] || <math qid="Q3446">\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, a > b+c, \cosh@@{\chi} = (a^{2}-b^{2}-c^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]</syntaxhighlight> || Error || Aborted || - || Skip - No test values generated
|}
|}
</div>
</div>

Latest revision as of 11:24, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.22.E8 0 x J ν ( t ) d t = 2 k = 0 J ν + 2 k + 1 ( x ) superscript subscript 0 𝑥 Bessel-J 𝜈 𝑡 𝑡 2 superscript subscript 𝑘 0 Bessel-J 𝜈 2 𝑘 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\nu}\left(t\right)\mathrm{d}t=2\sum% _{k=0}^{\infty}J_{\nu+2k+1}\left(x\right)}}
\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}
ν > - 1 , ( ν + k + 1 ) > 0 , ( ( ν + 2 k + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 𝜈 2 𝑘 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re(\nu+k+1)>0,\Re((\nu+2k+1)+k+1)>0}}
int(BesselJ(nu, t), t = 0..x) = 2*sum(BesselJ(nu + 2*k + 1, x), k = 0..infinity)
Integrate[BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == 2*Sum[BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [2 / 24]
Result: -.277492396
Test Values: {nu = -1/2, x = 3/2}

Result: -.1653166018
Test Values: {nu = 1/2, x = 3/2}

Skipped - Because timed out
10.22.E9 0 x J 2 n ( t ) d t = 0 x J 0 ( t ) d t - 2 k = 0 n - 1 J 2 k + 1 ( x ) , 0 x J 2 n + 1 ( t ) d t superscript subscript 0 𝑥 Bessel-J 2 𝑛 𝑡 𝑡 superscript subscript 0 𝑥 Bessel-J 0 𝑡 𝑡 2 superscript subscript 𝑘 0 𝑛 1 Bessel-J 2 𝑘 1 𝑥 superscript subscript 0 𝑥 Bessel-J 2 𝑛 1 𝑡 𝑡 {\displaystyle{\displaystyle\int_{0}^{x}J_{2n}\left(t\right)\mathrm{d}t=\int_{% 0}^{x}J_{0}\left(t\right)\mathrm{d}t-2\sum_{k=0}^{n-1}J_{2k+1}\left(x\right),% \quad\int_{0}^{x}J_{2n+1}\left(t\right)\mathrm{d}t}}
\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}
( ( 2 n ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( 2 k + 1 ) + k + 1 ) > 0 , ( ( 2 n + 1 ) + k + 1 ) > 0 formulae-sequence 2 𝑛 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 𝑘 1 0 2 𝑛 1 𝑘 1 0 {\displaystyle{\displaystyle\Re((2n)+k+1)>0,\Re(0+k+1)>0,\Re((2k+1)+k+1)>0,\Re% ((2n+1)+k+1)>0}}
int(BesselJ(2*n, t), t = 0..x) = int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)
Integrate[BesselJ[2*n, t], {t, 0, x}, GenerateConditions->None] == Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]
Failure Failure Error Error
10.22.E9 0 x J 0 ( t ) d t - 2 k = 0 n - 1 J 2 k + 1 ( x ) , 0 x J 2 n + 1 ( t ) d t = 1 - J 0 ( x ) - 2 k = 1 n J 2 k ( x ) superscript subscript 0 𝑥 Bessel-J 0 𝑡 𝑡 2 superscript subscript 𝑘 0 𝑛 1 Bessel-J 2 𝑘 1 𝑥 superscript subscript 0 𝑥 Bessel-J 2 𝑛 1 𝑡 𝑡 1 Bessel-J 0 𝑥 2 superscript subscript 𝑘 1 𝑛 Bessel-J 2 𝑘 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{0}\left(t\right)\mathrm{d}t-2\sum_{% k=0}^{n-1}J_{2k+1}\left(x\right),\quad\int_{0}^{x}J_{2n+1}\left(t\right)% \mathrm{d}t=1-J_{0}\left(x\right)-2\sum_{k=1}^{n}J_{2k}\left(x\right)}}
\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}
( ( 2 n ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( 2 k + 1 ) + k + 1 ) > 0 , ( ( 2 n + 1 ) + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 formulae-sequence 2 𝑛 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 𝑘 1 0 formulae-sequence 2 𝑛 1 𝑘 1 0 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re((2n)+k+1)>0,\Re(0+k+1)>0,\Re((2k+1)+k+1)>0,\Re% ((2n+1)+k+1)>0,\Re((2k)+k+1)>0}}
int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)
Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]
Failure Failure Error Error
10.22.E10 0 x t μ J ν ( t ) d t = x μ Γ ( 1 2 ν + 1 2 μ + 1 2 ) Γ ( 1 2 ν - 1 2 μ + 1 2 ) k = 0 ( ν + 2 k + 1 ) Γ ( 1 2 ν - 1 2 μ + 1 2 + k ) Γ ( 1 2 ν + 1 2 μ + 3 2 + k ) J ν + 2 k + 1 ( x ) superscript subscript 0 𝑥 superscript 𝑡 𝜇 Bessel-J 𝜈 𝑡 𝑡 superscript 𝑥 𝜇 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 superscript subscript 𝑘 0 𝜈 2 𝑘 1 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 𝑘 Euler-Gamma 1 2 𝜈 1 2 𝜇 3 2 𝑘 Bessel-J 𝜈 2 𝑘 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t^{\mu}J_{\nu}\left(t\right)\mathrm{d}% t=x^{\mu}\frac{\Gamma\left(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}\right)}{% \Gamma\left(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\right)}\*\sum_{k=0}^{% \infty}\frac{(\nu+2k+1)\Gamma\left(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k% \right)}{\Gamma\left(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k\right)}J_{\nu% +2k+1}\left(x\right)}}
\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}
( μ + ν + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( ν + 2 k + 1 ) + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 + k ) > 0 , ( 1 2 ν + 1 2 μ + 3 2 + k ) > 0 formulae-sequence 𝜇 𝜈 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 2 𝑘 1 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 𝑘 0 1 2 𝜈 1 2 𝜇 3 2 𝑘 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu+1\right)>0,\Re(\nu+k+1)>0,\Re((% \nu+2k+1)+k+1)>0,\Re(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})>0,\Re(\frac{1}% {2}\nu-\frac{1}{2}\mu+\frac{1}{2})>0,\Re(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1% }{2}+k)>0,\Re(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k)>0}}
int((t)^(mu)* BesselJ(nu, t), t = 0..x) = (x)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))* sum(((nu + 2*k + 1)*GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)+ k))/(GAMMA((1)/(2)*nu +(1)/(2)*mu +(3)/(2)+ k))*BesselJ(nu + 2*k + 1, x), k = 0..infinity)
Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (x)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]* Sum[Divide[(\[Nu]+ 2*k + 1)*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]+ k],Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]+ k]]*BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skipped - Because timed out
10.22.E11 0 x 1 - J 0 ( t ) t d t = 1 2 k = 1 ψ ( k + 1 ) - ψ ( 1 ) k ! ( 1 2 x ) k J k ( x ) superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 1 2 superscript subscript 𝑘 1 digamma 𝑘 1 digamma 1 𝑘 superscript 1 2 𝑥 𝑘 Bessel-J 𝑘 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}\frac{1-J_{0}\left(t\right)}{t}\mathrm% {d}t=\frac{1}{2}\sum_{k=1}^{\infty}\frac{\psi\left(k+1\right)-\psi\left(1% \right)}{k!}(\tfrac{1}{2}x)^{k}J_{k}\left(x\right)}}
\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}
( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(k+k+1)>0}}
int((1 - BesselJ(0, t))/(t), t = 0..x) = (1)/(2)*sum((Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselJ(k, x), k = 1..infinity)
Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselJ[k, x], {k, 1, Infinity}, GenerateConditions->None]
Aborted Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[0.2622772441151432, Times[-0.5, NSum[Times[Power[0.75, k], BesselJ[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}

Result: Plus[0.03100698635091531, Times[-0.5, NSum[Times[Power[0.25, k], BesselJ[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}

... skip entries to safe data
10.22.E12 x 0 x 1 - J 0 ( t ) t d t = 2 k = 0 ( 2 k + 3 ) ( ψ ( k + 2 ) - ψ ( 1 ) ) J 2 k + 3 ( x ) 𝑥 superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 2 superscript subscript 𝑘 0 2 𝑘 3 digamma 𝑘 2 digamma 1 Bessel-J 2 𝑘 3 𝑥 {\displaystyle{\displaystyle x\int_{0}^{x}\frac{1-J_{0}\left(t\right)}{t}% \mathrm{d}t=2\sum_{k=0}^{\infty}(2k+3)(\psi\left(k+2\right)-\psi\left(1\right)% )J_{2k+3}\left(x\right)}}
x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}
( 0 + k + 1 ) > 0 , ( ( 2 k + 3 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 2 𝑘 3 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k+3)+k+1)>0}}
x*int((1 - BesselJ(0, t))/(t), t = 0..x) = 2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity)
x*Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3] Skipped - Because timed out
10.22.E12 2 k = 0 ( 2 k + 3 ) ( ψ ( k + 2 ) - ψ ( 1 ) ) J 2 k + 3 ( x ) = x - 2 J 1 ( x ) + 2 k = 0 ( 2 k + 5 ) ( ψ ( k + 3 ) - ψ ( 1 ) - 1 ) J 2 k + 5 ( x ) 2 superscript subscript 𝑘 0 2 𝑘 3 digamma 𝑘 2 digamma 1 Bessel-J 2 𝑘 3 𝑥 𝑥 2 Bessel-J 1 𝑥 2 superscript subscript 𝑘 0 2 𝑘 5 digamma 𝑘 3 digamma 1 1 Bessel-J 2 𝑘 5 𝑥 {\displaystyle{\displaystyle 2\sum_{k=0}^{\infty}(2k+3)(\psi\left(k+2\right)-% \psi\left(1\right))J_{2k+3}\left(x\right)=x-2J_{1}\left(x\right)+2\sum_{k=0}^{% \infty}(2k+5)\*(\psi\left(k+3\right)-\psi\left(1\right)-1)J_{2k+5}\left(x% \right)}}
2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}
( 0 + k + 1 ) > 0 , ( ( 2 k + 3 ) + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 , ( ( 2 k + 5 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 3 𝑘 1 0 formulae-sequence 1 𝑘 1 0 2 𝑘 5 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k+3)+k+1)>0,\Re(1+k+1)>0,\Re((2% k+5)+k+1)>0}}
2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity) = x - 2*BesselJ(1, x)+ 2*sum((2*k + 5)*(Psi(k + 3)- Psi(1)- 1)*BesselJ(2*k + 5, x), k = 0..infinity)
2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] == x - 2*BesselJ[1, x]+ 2*Sum[(2*k + 5)*(PolyGamma[k + 3]- PolyGamma[1]- 1)*BesselJ[2*k + 5, x], {k, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Successful [Tested: 3] Skipped - Because timed out
10.22.E13 0 1 2 π J 2 ν ( 2 z cos θ ) cos ( 2 μ θ ) d θ = 1 2 π J ν + μ ( z ) J ν - μ ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 1 2 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{2\nu}\left(2z\cos% \theta\right)\cos\left(2\mu\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi J_{% \nu+\mu}\left(z\right)J_{\nu-\mu}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}
ν > - 1 2 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 2 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 𝜈 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re((2\nu)+k+1)>0,\Re((\nu+% \mu)+k+1)>0,\Re((\nu-\mu)+k+1)>0}}
int(BesselJ(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)
Integrate[BesselJ[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E14 0 π J 2 ν ( 2 z sin θ ) cos ( 2 μ θ ) d θ = π cos ( μ π ) J ν + μ ( z ) J ν - μ ( z ) superscript subscript 0 𝜋 Bessel-J 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 𝜋 𝜇 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 {\displaystyle{\displaystyle\int_{0}^{\pi}J_{2\nu}\left(2z\sin\theta\right)% \cos\left(2\mu\theta\right)\mathrm{d}\theta=\pi\cos\left(\mu\pi\right)J_{\nu+% \mu}\left(z\right)J_{\nu-\mu}\left(z\right)}}
\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}
ν > - 1 2 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 2 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 𝜈 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re((2\nu)+k+1)>0,\Re((\nu+% \mu)+k+1)>0,\Re((\nu-\mu)+k+1)>0}}
int(BesselJ(2*nu, 2*z*sin(theta))*cos(2*mu*theta), theta = 0..Pi) = Pi*cos(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)
Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Cos[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E15 0 π J 2 ν ( 2 z sin θ ) sin ( 2 μ θ ) d θ = π sin ( μ π ) J ν + μ ( z ) J ν - μ ( z ) superscript subscript 0 𝜋 Bessel-J 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 𝜋 𝜇 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 {\displaystyle{\displaystyle\int_{0}^{\pi}J_{2\nu}\left(2z\sin\theta\right)% \sin\left(2\mu\theta\right)\mathrm{d}\theta=\pi\sin\left(\mu\pi\right)J_{\nu+% \mu}\left(z\right)J_{\nu-\mu}\left(z\right)}}
\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}
ν > - 1 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 2 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 𝜈 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re((2\nu)+k+1)>0,\Re((\nu+\mu)+k+1)>0,% \Re((\nu-\mu)+k+1)>0}}
int(BesselJ(2*nu, 2*z*sin(theta))*sin(2*mu*theta), theta = 0..Pi) = Pi*sin(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)
Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Sin[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Sin[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E16 0 1 2 π J 0 ( 2 z sin θ ) cos ( 2 n θ ) d θ = 1 2 π J n 2 ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 0 2 𝑧 𝜃 2 𝑛 𝜃 𝜃 1 2 𝜋 Bessel-J 𝑛 2 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{0}\left(2z\sin\theta% \right)\cos\left(2n\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi{J_{n}^{2}}% \left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}
( 0 + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(n+k+1)>0}}
int(BesselJ(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*(BesselJ(n, z))^(2)
Integrate[BesselJ[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*(BesselJ[n, z])^(2)
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.22.E17 0 1 2 π Y 2 ν ( 2 z cos θ ) cos ( 2 μ θ ) d θ = 1 2 π cot ( 2 ν π ) J ν + μ ( z ) J ν - μ ( z ) - 1 2 π csc ( 2 ν π ) J μ - ν ( z ) J - μ - ν ( z ) superscript subscript 0 1 2 𝜋 Bessel-Y-Weber 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 1 2 𝜋 2 𝜈 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 1 2 𝜋 2 𝜈 𝜋 Bessel-J 𝜇 𝜈 𝑧 Bessel-J 𝜇 𝜈 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}Y_{2\nu}\left(2z\cos% \theta\right)\cos\left(2\mu\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi\cot% \left(2\nu\pi\right)J_{\nu+\mu}\left(z\right)J_{\nu-\mu}\left(z\right)-\tfrac{% 1}{2}\pi\csc\left(2\nu\pi\right)J_{\mu-\nu}\left(z\right)J_{-\mu-\nu}\left(z% \right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}
- 1 2 < ν , ν < 1 2 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 , ( ( μ - ν ) + k + 1 ) > 0 , ( ( - μ - ν ) + k + 1 ) > 0 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( - ( 2 ν ) ) + k + 1 ) > 0 formulae-sequence 1 2 𝜈 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 formulae-sequence 𝜇 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 𝑘 1 0 formulae-sequence 2 𝜈 𝑘 1 0 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}<\Re\nu,\Re\nu<\tfrac{1}{2},\Re((\nu+% \mu)+k+1)>0,\Re((\nu-\mu)+k+1)>0,\Re((\mu-\nu)+k+1)>0,\Re((-\mu-\nu)+k+1)>0,% \Re((2\nu)+k+1)>0,\Re((-(2\nu))+k+1)>0}}
int(BesselY(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*cot(2*nu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)-(1)/(2)*Pi*csc(2*nu*Pi)*BesselJ(mu - nu, z)*BesselJ(- mu - nu, z)
Integrate[BesselY[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*Cot[2*\[Nu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]-Divide[1,2]*Pi*Csc[2*\[Nu]*Pi]*BesselJ[\[Mu]- \[Nu], z]*BesselJ[- \[Mu]- \[Nu], z]
Failure Failure Error Skip - No test values generated
10.22.E18 0 1 2 π Y 0 ( 2 z sin θ ) cos ( 2 n θ ) d θ = 1 2 π J n ( z ) Y n ( z ) superscript subscript 0 1 2 𝜋 Bessel-Y-Weber 0 2 𝑧 𝜃 2 𝑛 𝜃 𝜃 1 2 𝜋 Bessel-J 𝑛 𝑧 Bessel-Y-Weber 𝑛 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}Y_{0}\left(2z\sin\theta% \right)\cos\left(2n\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi J_{n}\left(z% \right)Y_{n}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}
( n + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 , ( ( - n ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 0 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re(0+k+1)>0,\Re((-0)+k+1)>0,\Re((-n)% +k+1)>0}}
int(BesselY(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(n, z)*BesselY(n, z)
Integrate[BesselY[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[n, z]*BesselY[n, z]
Failure Failure Successful [Tested: 7] Skipped - Because timed out
10.22.E19 0 1 2 π J μ ( z sin θ ) ( sin θ ) μ + 1 ( cos θ ) 2 ν + 1 d θ = 2 ν Γ ( ν + 1 ) z - ν - 1 J μ + ν + 1 ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 superscript 𝜃 𝜇 1 superscript 𝜃 2 𝜈 1 𝜃 superscript 2 𝜈 Euler-Gamma 𝜈 1 superscript 𝑧 𝜈 1 Bessel-J 𝜇 𝜈 1 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)(\sin\theta)^{\mu+1}(\cos\theta)^{2\nu+1}\mathrm{d}\theta=2^{\nu}\Gamma% \left(\nu+1\right)z^{-\nu-1}J_{\mu+\nu+1}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}
μ > - 1 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ( μ + ν + 1 ) + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜇 1 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜇 𝜈 1 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re\mu>-1,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re((\mu+\nu+% 1)+k+1)>0,\Re(\nu+1)>0}}
int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (2)^(nu)* GAMMA(nu + 1)*(z)^(- nu - 1)* BesselJ(mu + nu + 1, z)
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(z)^(- \[Nu]- 1)* BesselJ[\[Mu]+ \[Nu]+ 1, z]
Successful Aborted - Successful [Tested: 300]
10.22.E20 0 1 2 π J μ ( z sin θ ) ( sin θ ) μ ( cos θ ) 2 μ d θ = π 1 2 2 μ - 1 z - μ Γ ( μ + 1 2 ) J μ 2 ( 1 2 z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 superscript 𝜃 𝜇 superscript 𝜃 2 𝜇 𝜃 superscript 𝜋 1 2 superscript 2 𝜇 1 superscript 𝑧 𝜇 Euler-Gamma 𝜇 1 2 Bessel-J 𝜇 2 1 2 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)(\sin\theta)^{\mu}(\cos\theta)^{2\mu}\mathrm{d}\theta=\pi^{\frac{1}{2}}% 2^{\mu-1}z^{-\mu}\*\Gamma\left(\mu+\tfrac{1}{2}\right){J_{\mu}^{2}}\left(% \tfrac{1}{2}z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}
μ > - 1 2 , ( ( μ ) + k + 1 ) > 0 , ( μ + 1 2 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜇 𝑘 1 0 𝜇 1 2 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re((\mu)+k+1)>0,\Re(\mu+% \tfrac{1}{2})>0}}
int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*(BesselJ(mu, (1)/(2)*z))^(2)
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*(BesselJ[\[Mu], Divide[1,2]*z])^(2)
Successful Aborted - Successful [Tested: 35]
10.22.E21 0 1 2 π Y μ ( z sin θ ) ( sin θ ) μ ( cos θ ) 2 μ d θ = π 1 2 2 μ - 1 z - μ Γ ( μ + 1 2 ) J μ ( 1 2 z ) Y μ ( 1 2 z ) superscript subscript 0 1 2 𝜋 Bessel-Y-Weber 𝜇 𝑧 𝜃 superscript 𝜃 𝜇 superscript 𝜃 2 𝜇 𝜃 superscript 𝜋 1 2 superscript 2 𝜇 1 superscript 𝑧 𝜇 Euler-Gamma 𝜇 1 2 Bessel-J 𝜇 1 2 𝑧 Bessel-Y-Weber 𝜇 1 2 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}Y_{\mu}\left(z\sin\theta% \right)(\sin\theta)^{\mu}(\cos\theta)^{2\mu}\mathrm{d}\theta=\pi^{\frac{1}{2}}% 2^{\mu-1}z^{-\mu}\*\Gamma\left(\mu+\tfrac{1}{2}\right)J_{\mu}\left(\tfrac{1}{2% }z\right)Y_{\mu}\left(\tfrac{1}{2}z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}
μ > - 1 2 , ( ( μ ) + k + 1 ) > 0 , ( μ + 1 2 ) > 0 , ( ( - ( μ ) ) + k + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜇 1 2 0 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re((\mu)+k+1)>0,\Re(\mu+% \tfrac{1}{2})>0,\Re((-(\mu))+k+1)>0}}
int(BesselY(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*BesselJ(mu, (1)/(2)*z)*BesselY(mu, (1)/(2)*z)
Integrate[BesselY[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*BesselJ[\[Mu], Divide[1,2]*z]*BesselY[\[Mu], Divide[1,2]*z]
Successful Aborted - Skipped - Because timed out
10.22.E22 0 1 2 π J μ ( z sin 2 θ ) J ν ( z cos 2 θ ) ( sin θ ) 2 μ + 1 ( cos θ ) 2 ν + 1 d θ = Γ ( μ + 1 2 ) Γ ( ν + 1 2 ) J μ + ν + 1 2 ( z ) ( 8 π z ) 1 2 Γ ( μ + ν + 1 ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 2 𝜃 Bessel-J 𝜈 𝑧 2 𝜃 superscript 𝜃 2 𝜇 1 superscript 𝜃 2 𝜈 1 𝜃 Euler-Gamma 𝜇 1 2 Euler-Gamma 𝜈 1 2 Bessel-J 𝜇 𝜈 1 2 𝑧 superscript 8 𝜋 𝑧 1 2 Euler-Gamma 𝜇 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z{\sin^{2}}% \theta\right)J_{\nu}\left(z{\cos^{2}}\theta\right)(\sin\theta)^{2\mu+1}(\cos% \theta)^{2\nu+1}\mathrm{d}\theta=\frac{\Gamma\left(\mu+\tfrac{1}{2}\right)% \Gamma\left(\nu+\tfrac{1}{2}\right)J_{\mu+\nu+\frac{1}{2}}\left(z\right)}{(8% \pi z)^{\frac{1}{2}}\Gamma\left(\mu+\nu+1\right)}}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}
μ > - 1 2 , ν > - 1 2 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + 1 2 ) + k + 1 ) > 0 , ( μ + 1 2 ) > 0 , ( ν + 1 2 ) > 0 , ( μ + ν + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜈 1 2 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 1 2 𝑘 1 0 formulae-sequence 𝜇 1 2 0 formulae-sequence 𝜈 1 2 0 𝜇 𝜈 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re\nu>-\tfrac{1}{2},\Re((\mu% )+k+1)>0,\Re(\nu+k+1)>0,\Re((\mu+\nu+\frac{1}{2})+k+1)>0,\Re(\mu+\tfrac{1}{2})% >0,\Re(\nu+\tfrac{1}{2})>0,\Re(\mu+\nu+1)>0}}
int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2))*BesselJ(mu + nu +(1)/(2), z))/((8*Pi*z)^((1)/(2))* GAMMA(mu + nu + 1))
Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]*BesselJ[\[Mu]+ \[Nu]+Divide[1,2], z],(8*Pi*z)^(Divide[1,2])* Gamma[\[Mu]+ \[Nu]+ 1]]
Error Aborted - Skipped - Because timed out
10.22.E23 0 1 2 π J μ ( z sin 2 θ ) J ν ( z cos 2 θ ) ( sin θ ) 2 α - 1 sec θ d θ = ( μ + ν + α ) Γ ( μ + α ) 2 α - 1 ν Γ ( μ + 1 ) z α J μ + ν + α ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 2 𝜃 Bessel-J 𝜈 𝑧 2 𝜃 superscript 𝜃 2 𝛼 1 𝜃 𝜃 𝜇 𝜈 𝛼 Euler-Gamma 𝜇 𝛼 superscript 2 𝛼 1 𝜈 Euler-Gamma 𝜇 1 superscript 𝑧 𝛼 Bessel-J 𝜇 𝜈 𝛼 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z{\sin^{2}}% \theta\right)J_{\nu}\left(z{\cos^{2}}\theta\right)(\sin\theta)^{2\alpha-1}\sec% \theta\mathrm{d}\theta=\frac{(\mu+\nu+\alpha)\Gamma\left(\mu+\alpha\right)2^{% \alpha-1}}{\nu\Gamma\left(\mu+1\right)z^{\alpha}}J_{\mu+\nu+\alpha}\left(z% \right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}
( μ + α ) > 0 , ν > 0 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + α ) + k + 1 ) > 0 , ( μ + α ) > 0 , ( μ + 1 ) > 0 formulae-sequence 𝜇 𝛼 0 formulae-sequence 𝜈 0 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 𝛼 𝑘 1 0 formulae-sequence 𝜇 𝛼 0 𝜇 1 0 {\displaystyle{\displaystyle\Re\left(\mu+\alpha\right)>0,\Re\nu>0,\Re((\mu)+k+% 1)>0,\Re(\nu+k+1)>0,\Re((\mu+\nu+\alpha)+k+1)>0,\Re(\mu+\alpha)>0,\Re(\mu+1)>0}}
int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*alpha - 1)* sec(theta), theta = 0..(1)/(2)*Pi) = ((mu + nu + alpha)*GAMMA(mu + alpha)*(2)^(alpha - 1))/(nu*GAMMA(mu + 1)*(z)^(alpha))*BesselJ(mu + nu + alpha, z)
Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Alpha]- 1)* Sec[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu]+ \[Alpha])*Gamma[\[Mu]+ \[Alpha]]*(2)^(\[Alpha]- 1),\[Nu]*Gamma[\[Mu]+ 1]*(z)^\[Alpha]]*BesselJ[\[Mu]+ \[Nu]+ \[Alpha], z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.22.E24 0 1 2 π J μ ( z sin 2 θ ) J ν ( z cos 2 θ ) cot θ d θ = 1 2 μ - 1 J μ + ν ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 2 𝜃 Bessel-J 𝜈 𝑧 2 𝜃 𝜃 𝜃 1 2 superscript 𝜇 1 Bessel-J 𝜇 𝜈 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z{\sin^{2}}% \theta\right)J_{\nu}\left(z{\cos^{2}}\theta\right)\cot\theta\mathrm{d}\theta=% \tfrac{1}{2}\mu^{-1}J_{\mu+\nu}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}
μ > 0 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 0 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>0,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0% ,\Re((\mu+\nu)+k+1)>0}}
int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*cot(theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*(mu)^(- 1)* BesselJ(mu + nu, z)
Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*Cot[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*\[Mu]^(- 1)* BesselJ[\[Mu]+ \[Nu], z]
Failure Aborted Skipped - Because timed out Skip - No test values generated
10.22.E25 0 1 2 π J μ ( z sin θ ) I ν ( z cos θ ) ( tan θ ) μ + 1 d θ = Γ ( 1 2 ν - 1 2 μ ) ( 1 2 z ) μ 2 Γ ( 1 2 ν + 1 2 μ + 1 ) J ν ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 modified-Bessel-first-kind 𝜈 𝑧 𝜃 superscript 𝜃 𝜇 1 𝜃 Euler-Gamma 1 2 𝜈 1 2 𝜇 superscript 1 2 𝑧 𝜇 2 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)I_{\nu}\left(z\cos\theta\right)(\tan\theta)^{\mu+1}\mathrm{d}\theta=% \frac{\Gamma\left(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu\right)(\tfrac{1}{2}z)^{\mu}}% {2\Gamma\left(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1\right)}J_{\nu}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}
ν > μ , μ > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 ν - 1 2 μ ) > 0 , ( 1 2 ν + 1 2 μ + 1 ) > 0 formulae-sequence 𝜈 𝜇 formulae-sequence 𝜇 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 0 1 2 𝜈 1 2 𝜇 1 0 {\displaystyle{\displaystyle\Re\nu>\Re\mu,\Re\mu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k% +1)>0,\Re(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu)>0,\Re(\tfrac{1}{2}\nu+\tfrac{1}{2}% \mu+1)>0}}
int(BesselJ(mu, z*sin(theta))*BesselI(nu, z*cos(theta))*(tan(theta))^(mu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA((1)/(2)*nu -(1)/(2)*mu)*((1)/(2)*z)^(mu))/(2*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))*BesselJ(nu, z)
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselI[\[Nu], z*Cos[\[Theta]]]*(Tan[\[Theta]])^(\[Mu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]*(Divide[1,2]*z)^\[Mu],2*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]*BesselJ[\[Nu], z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.22.E26 0 1 2 π J μ ( z sin θ ) J ν ( ζ cos θ ) ( sin θ ) μ + 1 ( cos θ ) ν + 1 d θ = z μ ζ ν J μ + ν + 1 ( ζ 2 + z 2 ) ( ζ 2 + z 2 ) 1 2 ( μ + ν + 1 ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 Bessel-J 𝜈 𝜁 𝜃 superscript 𝜃 𝜇 1 superscript 𝜃 𝜈 1 𝜃 superscript 𝑧 𝜇 superscript 𝜁 𝜈 Bessel-J 𝜇 𝜈 1 superscript 𝜁 2 superscript 𝑧 2 superscript superscript 𝜁 2 superscript 𝑧 2 1 2 𝜇 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)J_{\nu}\left(\zeta\cos\theta\right)(\sin\theta)^{\mu+1}(\cos\theta)^{% \nu+1}\mathrm{d}\theta=\frac{z^{\mu}\zeta^{\nu}J_{\mu+\nu+1}\left(\sqrt{\zeta^% {2}+z^{2}}\right)}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}
μ > - 1 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜇 1 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-1,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>% 0,\Re((\mu+\nu+1)+k+1)>0}}
int(BesselJ(mu, z*sin(theta))*BesselJ(nu, zeta*cos(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(nu + 1), theta = 0..(1)/(2)*Pi) = ((z)^(mu)* (zeta)^(nu)* BesselJ(mu + nu + 1, sqrt((zeta)^(2)+ (z)^(2))))/(((zeta)^(2)+ (z)^(2))^((1)/(2)*(mu + nu + 1)))
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselJ[\[Nu], \[Zeta]*Cos[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(z)^\[Mu]* \[Zeta]^\[Nu]* BesselJ[\[Mu]+ \[Nu]+ 1, Sqrt[\[Zeta]^(2)+ (z)^(2)]],(\[Zeta]^(2)+ (z)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]+ 1))]
Error Aborted - Skipped - Because timed out
10.22.E27 0 x t J ν - 1 2 ( t ) d t = 2 k = 0 ( ν + 2 k ) J ν + 2 k 2 ( x ) superscript subscript 0 𝑥 𝑡 Bessel-J 𝜈 1 2 𝑡 𝑡 2 superscript subscript 𝑘 0 𝜈 2 𝑘 Bessel-J 𝜈 2 𝑘 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t{J_{\nu-1}^{2}}\left(t\right)\mathrm{% d}t=2\sum_{k=0}^{\infty}(\nu+2k){J_{\nu+2k}^{2}}\left(x\right)}}
\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}
ν > 0 , ( ( ν - 1 ) + k + 1 ) > 0 , ( ( ν + 2 k ) + k + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>0,\Re((\nu-1)+k+1)>0,\Re((\nu+2k)+k+1)>0}}
int(t*(BesselJ(nu - 1, t))^(2), t = 0..x) = 2*sum((nu + 2*k)*(BesselJ(nu + 2*k, x))^(2), k = 0..infinity)
Integrate[t*(BesselJ[\[Nu]- 1, t])^(2), {t, 0, x}, GenerateConditions->None] == 2*Sum[(\[Nu]+ 2*k)*(BesselJ[\[Nu]+ 2*k, x])^(2), {k, 0, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 15] Successful [Tested: 15]
10.22.E28 0 x t ( J ν - 1 2 ( t ) - J ν + 1 2 ( t ) ) d t = 2 ν J ν 2 ( x ) superscript subscript 0 𝑥 𝑡 Bessel-J 𝜈 1 2 𝑡 Bessel-J 𝜈 1 2 𝑡 𝑡 2 𝜈 Bessel-J 𝜈 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t\left({J_{\nu-1}^{2}}\left(t\right)-{% J_{\nu+1}^{2}}\left(t\right)\right)\mathrm{d}t=2\nu{J_{\nu}^{2}}\left(x\right)}}
\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}
ν > 0 , ( ( ν - 1 ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>0,\Re((\nu-1)+k+1)>0,\Re((\nu+1)+k+1)>0,\Re% (\nu+k+1)>0}}
int(t*((BesselJ(nu - 1, t))^(2)- (BesselJ(nu + 1, t))^(2)), t = 0..x) = 2*nu*(BesselJ(nu, x))^(2)
Integrate[t*((BesselJ[\[Nu]- 1, t])^(2)- (BesselJ[\[Nu]+ 1, t])^(2)), {t, 0, x}, GenerateConditions->None] == 2*\[Nu]*(BesselJ[\[Nu], x])^(2)
Successful Successful - Successful [Tested: 15]
10.22.E29 0 x t J 0 2 ( t ) d t = 1 2 x 2 ( J 0 2 ( x ) + J 1 2 ( x ) ) superscript subscript 0 𝑥 𝑡 Bessel-J 0 2 𝑡 𝑡 1 2 superscript 𝑥 2 Bessel-J 0 2 𝑥 Bessel-J 1 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t{J_{0}^{2}}\left(t\right)\mathrm{d}t=% \tfrac{1}{2}x^{2}\left({J_{0}^{2}}\left(x\right)+{J_{1}^{2}}\left(x\right)% \right)}}
\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)
( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(1+k+1)>0}}
int(t*(BesselJ(0, t))^(2), t = 0..x) = (1)/(2)*(x)^(2)*((BesselJ(0, x))^(2)+ (BesselJ(1, x))^(2))
Integrate[t*(BesselJ[0, t])^(2), {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((BesselJ[0, x])^(2)+ (BesselJ[1, x])^(2))
Successful Successful - Successful [Tested: 3]
10.22.E30 0 x J n ( t ) J n + 1 ( t ) d t = 1 2 ( 1 - J 0 2 ( x ) ) - k = 1 n J k 2 ( x ) superscript subscript 0 𝑥 Bessel-J 𝑛 𝑡 Bessel-J 𝑛 1 𝑡 𝑡 1 2 1 Bessel-J 0 2 𝑥 superscript subscript 𝑘 1 𝑛 Bessel-J 𝑘 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{n}\left(t\right)J_{n+1}\left(t% \right)\mathrm{d}t=\tfrac{1}{2}\left(1-{J_{0}^{2}}\left(x\right)\right)-\sum_{% k=1}^{n}{J_{k}^{2}}\left(x\right)}}
\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}
( n + k + 1 ) > 0 , ( ( n + 1 ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑛 1 𝑘 1 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re((n+1)+k+1)>0,\Re(0+k+1)>0,\Re(k+k% +1)>0}}
int(BesselJ(n, t)*BesselJ(n + 1, t), t = 0..x) = (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n)
Integrate[BesselJ[n, t]*BesselJ[n + 1, t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3]
Failed [2 / 3]
Result: Plus[-0.6308420033135872, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 1.5]}

Result: Plus[-0.9403627636501156, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 0.5]}

10.22.E30 1 2 ( 1 - J 0 2 ( x ) ) - k = 1 n J k 2 ( x ) = k = n + 1 J k 2 ( x ) 1 2 1 Bessel-J 0 2 𝑥 superscript subscript 𝑘 1 𝑛 Bessel-J 𝑘 2 𝑥 superscript subscript 𝑘 𝑛 1 Bessel-J 𝑘 2 𝑥 {\displaystyle{\displaystyle\tfrac{1}{2}\left(1-{J_{0}^{2}}\left(x\right)% \right)-\sum_{k=1}^{n}{J_{k}^{2}}\left(x\right)=\sum_{k=n+1}^{\infty}{J_{k}^{2% }}\left(x\right)}}
\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}
( n + k + 1 ) > 0 , ( ( n + 1 ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑛 1 𝑘 1 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re((n+1)+k+1)>0,\Re(0+k+1)>0,\Re(k+k% +1)>0}}
(1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) = sum((BesselJ(k, x))^(2), k = n + 1..infinity)
Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] == Sum[(BesselJ[k, x])^(2), {k, n + 1, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[0.6309837827773054, Times[-1.0, NSum[Power[BesselJ[k, 1.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]]], {Ru<syntaxhighlight lang=mathematica>Result: Plus[0.9403627895513045, Times[-1.0, NSum[Power[BesselJ[k, 0.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 0.5]}

... skip entries to safe data
10.22.E31 0 x J μ ( t ) J ν ( x - t ) d t = 2 k = 0 ( - 1 ) k J μ + ν + 2 k + 1 ( x ) superscript subscript 0 𝑥 Bessel-J 𝜇 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 2 superscript subscript 𝑘 0 superscript 1 𝑘 Bessel-J 𝜇 𝜈 2 𝑘 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\mu}\left(t\right)J_{\nu}\left(x-t% \right)\mathrm{d}t=2\sum_{k=0}^{\infty}(-1)^{k}J_{\mu+\nu+2k+1}\left(x\right)}}
\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}
μ > - 1 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + 2 k + 1 ) + k + 1 ) > 0 formulae-sequence 𝜇 1 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 2 𝑘 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-1,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>% 0,\Re((\mu+\nu+2k+1)+k+1)>0}}
int(BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = 2*sum((- 1)^(k)* BesselJ(mu + nu + 2*k + 1, x), k = 0..infinity)
Integrate[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* BesselJ[\[Mu]+ \[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skip - No test values generated
10.22.E32 0 x J ν ( t ) J 1 - ν ( x - t ) d t = J 0 ( x ) - cos x superscript subscript 0 𝑥 Bessel-J 𝜈 𝑡 Bessel-J 1 𝜈 𝑥 𝑡 𝑡 Bessel-J 0 𝑥 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\nu}\left(t\right)J_{1-\nu}\left(x-% t\right)\mathrm{d}t=J_{0}\left(x\right)-\cos x}}
\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}
- 1 < ν , ν < 2 , ( ν + k + 1 ) > 0 , ( ( 1 - ν ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 formulae-sequence 1 𝜈 formulae-sequence 𝜈 2 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 𝜈 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle-1<\Re\nu,\Re\nu<2,\Re(\nu+k+1)>0,\Re((1-\nu)+k+1)% >0,\Re(0+k+1)>0}}
int(BesselJ(nu, t)*BesselJ(1 - nu, x - t), t = 0..x) = BesselJ(0, x)- cos(x)
Integrate[BesselJ[\[Nu], t]*BesselJ[1 - \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == BesselJ[0, x]- Cos[x]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E33 0 x J ν ( t ) J - ν ( x - t ) d t = sin x superscript subscript 0 𝑥 Bessel-J 𝜈 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\nu}\left(t\right)J_{-\nu}\left(x-t% \right)\mathrm{d}t=\sin x}}
\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}
| ν | < 1 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<1,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(BesselJ(nu, t)*BesselJ(- nu, x - t), t = 0..x) = sin(x)
Integrate[BesselJ[\[Nu], t]*BesselJ[- \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Sin[x]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E34 0 x t - 1 J μ ( t ) J ν ( x - t ) d t = J μ + ν ( x ) μ superscript subscript 0 𝑥 superscript 𝑡 1 Bessel-J 𝜇 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 Bessel-J 𝜇 𝜈 𝑥 𝜇 {\displaystyle{\displaystyle\int_{0}^{x}t^{-1}J_{\mu}\left(t\right)J_{\nu}% \left(x-t\right)\mathrm{d}t=\frac{J_{\mu+\nu}\left(x\right)}{\mu}}}
\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}
μ > 0 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 0 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>0,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0% ,\Re((\mu+\nu)+k+1)>0}}
int((t)^(- 1)* BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = (BesselJ(mu + nu, x))/(mu)
Integrate[(t)^(- 1)* BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Divide[BesselJ[\[Mu]+ \[Nu], x],\[Mu]]
Failure Failure Manual Skip! Skip - No test values generated
10.22.E35 0 x J μ ( t ) J ν ( x - t ) d t t ( x - t ) = ( μ + ν ) J μ + ν ( x ) μ ν x superscript subscript 0 𝑥 Bessel-J 𝜇 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 𝑡 𝑥 𝑡 𝜇 𝜈 Bessel-J 𝜇 𝜈 𝑥 𝜇 𝜈 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}\frac{J_{\mu}\left(t\right)J_{\nu}% \left(x-t\right)\mathrm{d}t}{t(x-t)}=\frac{(\mu+\nu)J_{\mu+\nu}\left(x\right)}% {\mu\nu x}}}
\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}
μ > 0 , ν > 0 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 0 formulae-sequence 𝜈 0 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>0,\Re\nu>0,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0,% \Re((\mu+\nu)+k+1)>0}}
int((BesselJ(mu, t)*BesselJ(nu, x - t))/(t*(x - t)), t = 0..x) = ((mu + nu)*BesselJ(mu + nu, x))/(mu*nu*x)
Integrate[Divide[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t],t*(x - t)], {t, 0, x}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu])*BesselJ[\[Mu]+ \[Nu], x],\[Mu]*\[Nu]*x]
Error Failure - Skip - No test values generated
10.22.E36 1 Γ ( α ) 0 x ( x - t ) α - 1 J ν ( t ) d t = 2 α k = 0 ( α ) k k ! J ν + α + 2 k ( x ) 1 Euler-Gamma 𝛼 superscript subscript 0 𝑥 superscript 𝑥 𝑡 𝛼 1 Bessel-J 𝜈 𝑡 𝑡 superscript 2 𝛼 superscript subscript 𝑘 0 subscript 𝛼 𝑘 𝑘 Bessel-J 𝜈 𝛼 2 𝑘 𝑥 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{x}(x-% t)^{\alpha-1}J_{\nu}\left(t\right)\mathrm{d}t=2^{\alpha}\sum_{k=0}^{\infty}% \frac{(\alpha)_{k}}{k!}J_{\nu+\alpha+2k}\left(x\right)}}
\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}
α > 0 , ν 0 , ( ν + k + 1 ) > 0 , ( ( ν + α + 2 k ) + k + 1 ) > 0 , ( α ) > 0 formulae-sequence 𝛼 0 formulae-sequence 𝜈 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝛼 2 𝑘 𝑘 1 0 𝛼 0 {\displaystyle{\displaystyle\Re\alpha>0,\Re\nu\geq 0,\Re(\nu+k+1)>0,\Re((\nu+% \alpha+2k)+k+1)>0,\Re(\alpha)>0}}
(1)/(GAMMA(alpha))*int((x - t)^(alpha - 1)* BesselJ(nu, t), t = 0..x) = (2)^(alpha)* sum((alpha[k])/(factorial(k))*BesselJ(nu + alpha + 2*k, x), k = 0..infinity)
Divide[1,Gamma[\[Alpha]]]*Integrate[(x - t)^(\[Alpha]- 1)* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (2)^\[Alpha]* Sum[Divide[Subscript[\[Alpha], k],(k)!]*BesselJ[\[Nu]+ \[Alpha]+ 2*k, x], {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skip - No test values generated
10.22.E37 0 1 t J ν ( j ν , t ) J ν ( j ν , m t ) d t = 1 2 ( J ν ( j ν , ) ) 2 δ , m superscript subscript 0 1 𝑡 Bessel-J 𝜈 subscript 𝑗 𝜈 𝑡 Bessel-J 𝜈 subscript 𝑗 𝜈 𝑚 𝑡 𝑡 1 2 superscript diffop Bessel-J 𝜈 1 subscript 𝑗 𝜈 2 Kronecker 𝑚 {\displaystyle{\displaystyle\int_{0}^{1}tJ_{\nu}\left(j_{\nu,\ell}t\right)J_{% \nu}\left(j_{\nu,m}t\right)\mathrm{d}t=\tfrac{1}{2}\left(J_{\nu}'\left(j_{\nu,% \ell}\right)\right)^{2}\delta_{\ell,m}}}
\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
int(t*BesselJ(nu, j[nu , ell]*t)*BesselJ(nu, j[nu , m]*t), t = 0..1) = (1)/(2)*(diff( BesselJ(nu, j[nu , ell]), j[nu , ell]$(1) ))^(2)* KroneckerDelta[ell, m]
Integrate[t*BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[j, \[Nu], m]*t], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(D[BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]], {Subscript[j, \[Nu], \[ScriptL]], 1}])^(2)* KroneckerDelta[\[ScriptL], m]
Failure Failure Error
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 2], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.22.E38 0 1 t J ν ( α t ) J ν ( α m t ) d t = ( a 2 b 2 + α 2 - ν 2 ) ( J ν ( α ) ) 2 2 α 2 δ , m superscript subscript 0 1 𝑡 Bessel-J 𝜈 subscript 𝛼 𝑡 Bessel-J 𝜈 subscript 𝛼 𝑚 𝑡 𝑡 superscript 𝑎 2 superscript 𝑏 2 superscript subscript 𝛼 2 superscript 𝜈 2 superscript Bessel-J 𝜈 subscript 𝛼 2 2 superscript subscript 𝛼 2 Kronecker 𝑚 {\displaystyle{\displaystyle\int_{0}^{1}tJ_{\nu}\left(\alpha_{\ell}t\right)J_{% \nu}\left(\alpha_{m}t\right)\mathrm{d}t=\left(\frac{a^{2}}{b^{2}}+\alpha_{\ell% }^{2}-\nu^{2}\right)\frac{(J_{\nu}\left(\alpha_{\ell}\right))^{2}}{2\alpha_{% \ell}^{2}}\delta_{\ell,m}}}
\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]
Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]
Failure Failure Error
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.22.E39 x J 0 ( t ) t d t + γ + ln ( 1 2 x ) = 0 x 1 - J 0 ( t ) t d t superscript subscript 𝑥 Bessel-J 0 𝑡 𝑡 𝑡 1 2 𝑥 superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\int_{x}^{\infty}\frac{J_{0}\left(t\right)}{t}% \mathrm{d}t+\gamma+\ln\left(\tfrac{1}{2}x\right)=\int_{0}^{x}\frac{1-J_{0}% \left(t\right)}{t}\mathrm{d}t}}
\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)
Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]
Successful Successful - Successful [Tested: 3]
10.22.E39 0 x 1 - J 0 ( t ) t d t = k = 1 ( - 1 ) k - 1 ( 1 2 x ) 2 k 2 k ( k ! ) 2 superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 superscript subscript 𝑘 1 superscript 1 𝑘 1 superscript 1 2 𝑥 2 𝑘 2 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle\int_{0}^{x}\frac{1-J_{0}\left(t\right)}{t}\mathrm% {d}t=\sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}}}
\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 3]
10.22.E40 x Y 0 ( t ) t d t = - 1 π ( ln ( 1 2 x ) + γ ) 2 + π 6 + 2 π k = 1 ( - 1 ) k ( ψ ( k + 1 ) + 1 2 k - ln ( 1 2 x ) ) ( 1 2 x ) 2 k 2 k ( k ! ) 2 superscript subscript 𝑥 Bessel-Y-Weber 0 𝑡 𝑡 𝑡 1 𝜋 superscript 1 2 𝑥 2 𝜋 6 2 𝜋 superscript subscript 𝑘 1 superscript 1 𝑘 digamma 𝑘 1 1 2 𝑘 1 2 𝑥 superscript 1 2 𝑥 2 𝑘 2 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle\int_{x}^{\infty}\frac{Y_{0}\left(t\right)}{t}% \mathrm{d}t=-\frac{1}{\pi}\left(\ln\left(\tfrac{1}{2}x\right)+\gamma\right)^{2% }+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\psi\left(k+1% \right)+\frac{1}{2k}-\ln\left(\tfrac{1}{2}x\right)\right)\frac{(\tfrac{1}{2}x)% ^{2k}}{2k(k!)^{2}}}}
\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}
( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((-0)+k+1)>0}}
int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
10.22.E41 0 J ν ( t ) d t = 1 superscript subscript 0 Bessel-J 𝜈 𝑡 𝑡 1 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(t\right)\mathrm{d}t=% 1}}
\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1
ν > - 1 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re(\nu+k+1)>0}}
int(BesselJ(nu, t), t = 0..infinity) = 1
Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 8]
10.22.E42 0 Y ν ( t ) d t = - tan ( 1 2 ν π ) superscript subscript 0 Bessel-Y-Weber 𝜈 𝑡 𝑡 1 2 𝜈 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}Y_{\nu}\left(t\right)\mathrm{d}t=% -\tan\left(\tfrac{1}{2}\nu\pi\right)}}
\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}
| ν | < 1 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<1,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)
Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]
Successful Aborted - Successful [Tested: 6]
10.22.E43 0 t μ J ν ( t ) d t = 2 μ Γ ( 1 2 ν + 1 2 μ + 1 2 ) Γ ( 1 2 ν - 1 2 μ + 1 2 ) superscript subscript 0 superscript 𝑡 𝜇 Bessel-J 𝜈 𝑡 𝑡 superscript 2 𝜇 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu}J_{\nu}\left(t\right)% \mathrm{d}t=2^{\mu}\frac{\Gamma\left(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}% {2}\right)}{\Gamma\left(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}\right)}}}
\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}
( μ + ν ) > - 1 , ( ν + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 ) > 0 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 0 1 2 𝜈 1 2 𝜇 1 2 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>-1,\Re(\nu+k+1)>0,\Re(% \tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}\nu-\tfrac{1}{% 2}\mu+\tfrac{1}{2})>0}}
int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))
Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]
Successful Successful - Successful [Tested: 10]
10.22.E44 0 t μ Y ν ( t ) d t = 2 μ π Γ ( 1 2 μ + 1 2 ν + 1 2 ) Γ ( 1 2 μ - 1 2 ν + 1 2 ) sin ( 1 2 μ - 1 2 ν ) π superscript subscript 0 superscript 𝑡 𝜇 Bessel-Y-Weber 𝜈 𝑡 𝑡 superscript 2 𝜇 𝜋 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 1 2 𝜇 1 2 𝜈 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu}Y_{\nu}\left(t\right)% \mathrm{d}t=\frac{2^{\mu}}{\pi}\Gamma\left(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+% \tfrac{1}{2}\right)\Gamma\left(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}% \right)\sin\left(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu\right)\pi}}
\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi
( μ + ν ) > - 1 , ( μ - ν ) > - 1 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( 1 2 μ + 1 2 ν + 1 2 ) > 0 , ( 1 2 μ - 1 2 ν + 1 2 ) > 0 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 0 1 2 𝜇 1 2 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>-1,\Re\left(\mu-\nu\right)% >-1,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+% \tfrac{1}{2})>0,\Re(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})>0}}
int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi
Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi
Error Aborted -
Failed [10 / 10]
Result: Complex[-0.5512405929316078, 0.2551977660147906]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.26217720344291356, -0.18052742798771904]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E45 0 1 - J 0 ( t ) t μ d t = - π sec ( 1 2 μ π ) 2 μ Γ 2 ( 1 2 μ + 1 2 ) superscript subscript 0 1 Bessel-J 0 𝑡 superscript 𝑡 𝜇 𝑡 𝜋 1 2 𝜇 𝜋 superscript 2 𝜇 Euler-Gamma 2 1 2 𝜇 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{1-J_{0}\left(t\right)}{t^{% \mu}}\mathrm{d}t=-\frac{\pi\sec\left(\frac{1}{2}\mu\pi\right)}{2^{\mu}{\Gamma^% {2}}\left(\frac{1}{2}\mu+\frac{1}{2}\right)}}}
\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}
1 < μ , μ < 3 , ( 0 + k + 1 ) > 0 , ( 1 2 μ + 1 2 ) > 0 formulae-sequence 1 𝜇 formulae-sequence 𝜇 3 formulae-sequence 0 𝑘 1 0 1 2 𝜇 1 2 0 {\displaystyle{\displaystyle 1<\Re\mu,\Re\mu<3,\Re(0+k+1)>0,\Re(\frac{1}{2}\mu% +\frac{1}{2})>0}}
int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))
Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]
Error Aborted - Successful [Tested: 10]
10.22.E46 0 t ν + 1 J ν ( a t ) ( t 2 + b 2 ) μ + 1 d t = a μ b ν - μ 2 μ Γ ( μ + 1 ) K ν - μ ( a b ) superscript subscript 0 superscript 𝑡 𝜈 1 Bessel-J 𝜈 𝑎 𝑡 superscript superscript 𝑡 2 superscript 𝑏 2 𝜇 1 𝑡 superscript 𝑎 𝜇 superscript 𝑏 𝜈 𝜇 superscript 2 𝜇 Euler-Gamma 𝜇 1 modified-Bessel-second-kind 𝜈 𝜇 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{t^{\nu+1}J_{\nu}\left(at% \right)}{(t^{2}+b^{2})^{\mu+1}}\mathrm{d}t=\frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}% \Gamma\left(\mu+1\right)}K_{\nu-\mu}\left(ab\right)}}
\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}
a > 0 , b > 0 , - 1 < ν , ν < 2 μ + 3 2 , ( ν + k + 1 ) > 0 , ( μ + 1 ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 1 𝜈 formulae-sequence 𝜈 2 𝜇 3 2 formulae-sequence 𝜈 𝑘 1 0 𝜇 1 0 {\displaystyle{\displaystyle a>0,\Re b>0,-1<\Re\nu,\Re\nu<2\Re\mu+\tfrac{3}{2}% ,\Re(\nu+k+1)>0,\Re(\mu+1)>0}}
int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)
Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]
Error Aborted - Skipped - Because timed out
10.22.E47 0 t ν Y ν ( a t ) t 2 + b 2 d t = - b ν - 1 K ν ( a b ) superscript subscript 0 superscript 𝑡 𝜈 Bessel-Y-Weber 𝜈 𝑎 𝑡 superscript 𝑡 2 superscript 𝑏 2 𝑡 superscript 𝑏 𝜈 1 modified-Bessel-second-kind 𝜈 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{t^{\nu}Y_{\nu}\left(at% \right)}{t^{2}+b^{2}}\mathrm{d}t=-b^{\nu-1}K_{\nu}\left(ab\right)}}
\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}
a > 0 , b > 0 , - 1 2 < ν , ν < 5 2 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 formulae-sequence 1 2 𝜈 formulae-sequence 𝜈 5 2 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle a>0,\Re b>0,-\tfrac{1}{2}<\Re\nu,\Re\nu<\tfrac{5}% {2},\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)
Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]
Error Aborted - Skipped - Because timed out
10.22.E48 0 J μ ( x cosh ϕ ) ( cosh ϕ ) 1 - μ ( sinh ϕ ) 2 ν + 1 d ϕ = 2 ν Γ ( ν + 1 ) x - ν - 1 J μ - ν - 1 ( x ) superscript subscript 0 Bessel-J 𝜇 𝑥 italic-ϕ superscript italic-ϕ 1 𝜇 superscript italic-ϕ 2 𝜈 1 italic-ϕ superscript 2 𝜈 Euler-Gamma 𝜈 1 superscript 𝑥 𝜈 1 Bessel-J 𝜇 𝜈 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\mu}\left(x\cosh\phi\right)(% \cosh\phi)^{1-\mu}(\sinh\phi)^{2\nu+1}\mathrm{d}\phi=2^{\nu}\Gamma\left(\nu+1% \right)x^{-\nu-1}J_{\mu-\nu-1}\left(x\right)}}
\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}
x > 0 , ν > - 1 , μ > 2 ν + 1 2 , ( ( μ ) + k + 1 ) > 0 , ( ( μ - ν - 1 ) + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝑥 0 formulae-sequence 𝜈 1 formulae-sequence 𝜇 2 𝜈 1 2 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜇 𝜈 1 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle x>0,\Re\nu>-1,\Re\mu>2\Re\nu+\tfrac{1}{2},\Re((% \mu)+k+1)>0,\Re((\mu-\nu-1)+k+1)>0,\Re(\nu+1)>0}}
int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)
Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]
Error Aborted - Skipped - Because timed out
10.22.E49 0 t μ - 1 e - a t J ν ( b t ) d t = ( 1 2 b ) ν a μ + ν Γ ( μ + ν ) 𝐅 ( μ + ν 2 , μ + ν + 1 2 ; ν + 1 ; - b 2 a 2 ) superscript subscript 0 superscript 𝑡 𝜇 1 superscript 𝑒 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 𝑡 superscript 1 2 𝑏 𝜈 superscript 𝑎 𝜇 𝜈 Euler-Gamma 𝜇 𝜈 scaled-hypergeometric-bold-F 𝜇 𝜈 2 𝜇 𝜈 1 2 𝜈 1 superscript 𝑏 2 superscript 𝑎 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu-1}e^{-at}J_{\nu}\left(bt% \right)\mathrm{d}t=\frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\Gamma\left(\mu+% \nu\right)\*\mathbf{F}\left(\frac{\mu+\nu}{2},\frac{\mu+\nu+1}{2};\nu+1;-\frac% {b^{2}}{a^{2}}\right)}}
\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}
( μ + ν ) > 0 , ( a + i b ) > 0 , ( a - i b ) > 0 , ( ν + k + 1 ) > 0 , ( μ + ν ) > 0 formulae-sequence 𝜇 𝜈 0 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>0,\Re\left(a+ib\right)>0,% \Re\left(a-ib\right)>0,\Re(\nu+k+1)>0,\Re(\mu+\nu)>0}}
int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]
Error Aborted - Successful [Tested: 0]
10.22.E50 0 t μ - 1 e - a t Y ν ( b t ) d t = cot ( ν π ) ( 1 2 b ) ν Γ ( μ + ν ) ( a 2 + b 2 ) 1 2 ( μ + ν ) 𝐅 ( μ + ν 2 , 1 - μ + ν 2 ; ν + 1 ; b 2 a 2 + b 2 ) - csc ( ν π ) ( 1 2 b ) - ν Γ ( μ - ν ) ( a 2 + b 2 ) 1 2 ( μ - ν ) 𝐅 ( μ - ν 2 , 1 - μ - ν 2 ; 1 - ν ; b 2 a 2 + b 2 ) superscript subscript 0 superscript 𝑡 𝜇 1 superscript 𝑒 𝑎 𝑡 Bessel-Y-Weber 𝜈 𝑏 𝑡 𝑡 𝜈 𝜋 superscript 1 2 𝑏 𝜈 Euler-Gamma 𝜇 𝜈 superscript superscript 𝑎 2 superscript 𝑏 2 1 2 𝜇 𝜈 scaled-hypergeometric-bold-F 𝜇 𝜈 2 1 𝜇 𝜈 2 𝜈 1 superscript 𝑏 2 superscript 𝑎 2 superscript 𝑏 2 𝜈 𝜋 superscript 1 2 𝑏 𝜈 Euler-Gamma 𝜇 𝜈 superscript superscript 𝑎 2 superscript 𝑏 2 1 2 𝜇 𝜈 scaled-hypergeometric-bold-F 𝜇 𝜈 2 1 𝜇 𝜈 2 1 𝜈 superscript 𝑏 2 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu-1}e^{-at}Y_{\nu}\left(bt% \right)\mathrm{d}t=\cot\left(\nu\pi\right)\frac{(\tfrac{1}{2}b)^{\nu}\Gamma% \left(\mu+\nu\right)}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\mathbf{F}\left(% \frac{\mu+\nu}{2},\frac{1-\mu+\nu}{2};\nu+1;\frac{b^{2}}{a^{2}+b^{2}}\right)-% \csc\left(\nu\pi\right)\frac{(\tfrac{1}{2}b)^{-\nu}\Gamma\left(\mu-\nu\right)}% {(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\mathbf{F}\left(\frac{\mu-\nu}{2},% \frac{1-\mu-\nu}{2};1-\nu;\frac{b^{2}}{a^{2}+b^{2}}\right)}}
\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}
μ > | ν | , ( a + i b ) > 0 , ( a - i b ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( μ + ν ) > 0 , ( μ - ν ) > 0 formulae-sequence 𝜇 𝜈 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝑎 𝑖 𝑏 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 0 𝜇 𝜈 0 {\displaystyle{\displaystyle\Re\mu>|\Re\nu|,\Re\left(a+ib\right)>0,\Re\left(a-% ib\right)>0,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re(\mu+\nu)>0,\Re(\mu-\nu)>0}}
int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]
Error Aborted - Skipped - Because timed out
10.22.E51 0 J ν ( b t ) exp ( - p 2 t 2 ) t ν + 1 d t = b ν ( 2 p 2 ) ν + 1 exp ( - b 2 4 p 2 ) superscript subscript 0 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 superscript 𝑡 𝜈 1 𝑡 superscript 𝑏 𝜈 superscript 2 superscript 𝑝 2 𝜈 1 superscript 𝑏 2 4 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)t^{\nu+1}\mathrm{d}t=\frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp% \left(-\frac{b^{2}}{4p^{2}}\right)}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]
Error Aborted -
Failed [151 / 300]
Result: Complex[-0.06577510728447342, -0.5886826409090221]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0556301041786353, -0.2359104145157832]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E52 0 J ν ( b t ) exp ( - p 2 t 2 ) d t = π 2 p exp ( - b 2 8 p 2 ) I ν / 2 ( b 2 8 p 2 ) superscript subscript 0 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 𝑡 𝜋 2 𝑝 superscript 𝑏 2 8 superscript 𝑝 2 modified-Bessel-first-kind 𝜈 2 superscript 𝑏 2 8 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)\mathrm{d}t=\frac{\sqrt{\pi}}{2p}\exp\left(-\frac{b^{2}}{8p^{% 2}}\right)I_{\ifrac{\nu}{2}}\left(\frac{b^{2}}{8p^{2}}\right)}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]
Error Aborted - Skip - No test values generated
10.22.E53 0 Y 2 ν ( b t ) exp ( - p 2 t 2 ) d t = - π 2 p exp ( - b 2 8 p 2 ) ( I ν ( b 2 8 p 2 ) tan ( ν π ) + 1 π K ν ( b 2 8 p 2 ) sec ( ν π ) ) superscript subscript 0 Bessel-Y-Weber 2 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 𝑡 𝜋 2 𝑝 superscript 𝑏 2 8 superscript 𝑝 2 modified-Bessel-first-kind 𝜈 superscript 𝑏 2 8 superscript 𝑝 2 𝜈 𝜋 1 𝜋 modified-Bessel-second-kind 𝜈 superscript 𝑏 2 8 superscript 𝑝 2 𝜈 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}Y_{2\nu}\left(bt\right)\exp\left(% -p^{2}t^{2}\right)\mathrm{d}t=-\frac{\sqrt{\pi}}{2p}\exp\left(-\frac{b^{2}}{8p% ^{2}}\right)\left(I_{\nu}\left(\frac{b^{2}}{8p^{2}}\right)\tan\left(\nu\pi% \right)+\frac{1}{\pi}K_{\nu}\left(\frac{b^{2}}{8p^{2}}\right)\sec\left(\nu\pi% \right)\right)}}
\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)
| ν | < 1 2 , ( p 2 ) > 0 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( - ( 2 ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence superscript 𝑝 2 0 formulae-sequence 2 𝜈 𝑘 1 0 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<\tfrac{1}{2},\Re\left(p^{2}\right)>0,\Re(% (2\nu)+k+1)>0,\Re((-(2\nu))+k+1)>0}}
int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))
Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])
Error Aborted - Skipped - Because timed out
10.22.E54 0 J ν ( b t ) exp ( - p 2 t 2 ) t μ - 1 d t = ( 1 2 b / p ) ν Γ ( 1 2 ν + 1 2 μ ) 2 p μ exp ( - b 2 4 p 2 ) 𝐌 ( 1 2 ν - 1 2 μ + 1 , ν + 1 , b 2 4 p 2 ) superscript subscript 0 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑝 2 superscript 𝑡 2 superscript 𝑡 𝜇 1 𝑡 superscript 1 2 𝑏 𝑝 𝜈 Euler-Gamma 1 2 𝜈 1 2 𝜇 2 superscript 𝑝 𝜇 superscript 𝑏 2 4 superscript 𝑝 2 Kummer-confluent-hypergeometric-bold-M 1 2 𝜈 1 2 𝜇 1 𝜈 1 superscript 𝑏 2 4 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\nu}\left(bt\right)\exp\left(-% p^{2}t^{2}\right)t^{\mu-1}\mathrm{d}t=\frac{(\tfrac{1}{2}b/p)^{\nu}\Gamma\left% (\tfrac{1}{2}\nu+\tfrac{1}{2}\mu\right)}{2p^{\mu}}\exp\left(-\frac{b^{2}}{4p^{% 2}}\right)\*{\mathbf{M}}\left(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1,\nu+1,\frac{b^% {2}}{4p^{2}}\right)}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}
( μ + ν ) > 0 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ ) > 0 formulae-sequence 𝜇 𝜈 0 formulae-sequence superscript 𝑝 2 0 formulae-sequence 𝜈 𝑘 1 0 1 2 𝜈 1 2 𝜇 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>0,\Re\left(p^{2}\right)>0,% \Re(\nu+k+1)>0,\Re(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu)>0}}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]
Error Aborted -
Failed [246 / 300]
Result: Complex[0.07541885663346475, -0.6281916024632631]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1002850405400357, -0.7734416454563844]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E55 0 t - 1 J ν + 2 + 1 ( t ) J ν + 2 m + 1 ( t ) d t = δ , m 2 ( 2 + ν + 1 ) superscript subscript 0 superscript 𝑡 1 Bessel-J 𝜈 2 1 𝑡 Bessel-J 𝜈 2 𝑚 1 𝑡 𝑡 Kronecker 𝑚 2 2 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{-1}J_{\nu+2\ell+1}\left(t% \right)J_{\nu+2m+1}\left(t\right)\mathrm{d}t=\frac{\delta_{\ell,m}}{2(2\ell+% \nu+1)}}}
\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}
ν + + m > - 1 , ( ( ν + 2 + 1 ) + k + 1 ) > 0 , ( ( ν + 2 m + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑚 1 formulae-sequence 𝜈 2 1 𝑘 1 0 𝜈 2 𝑚 1 𝑘 1 0 {\displaystyle{\displaystyle\nu+\ell+m>-1,\Re((\nu+2\ell+1)+k+1)>0,\Re((\nu+2m% +1)+k+1)>0}}
int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))
Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]
Failure Failure Error
Failed [18 / 54]
Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Rational[-3, 2]]}

Result: Indeterminate
Test Values: {Rule[m, 2], Rule[ℓ, 2], Rule[ν, Rational[-3, 2]]}

... skip entries to safe data
10.22.E56 0 J μ ( a t ) J ν ( b t ) t λ d t = a μ Γ ( 1 2 ν + 1 2 μ - 1 2 λ + 1 2 ) 2 λ b μ - λ + 1 Γ ( 1 2 ν - 1 2 μ + 1 2 λ + 1 2 ) 𝐅 ( 1 2 ( μ + ν - λ + 1 ) , 1 2 ( μ - ν - λ + 1 ) ; μ + 1 ; a 2 b 2 ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑡 𝜆 𝑡 superscript 𝑎 𝜇 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 superscript 2 𝜆 superscript 𝑏 𝜇 𝜆 1 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 scaled-hypergeometric-bold-F 1 2 𝜇 𝜈 𝜆 1 1 2 𝜇 𝜈 𝜆 1 𝜇 1 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{J_{\mu}\left(at\right)J_{% \nu}\left(bt\right)}{t^{\lambda}}\mathrm{d}t=\frac{a^{\mu}\Gamma\left(\frac{1}% {2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}\right)}{2^{\lambda}b^{\mu% -\lambda+1}\Gamma\left(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{% 1}{2}\right)}\*\mathbf{F}\left(\tfrac{1}{2}(\mu+\nu-\lambda+1),\tfrac{1}{2}(% \mu-\nu-\lambda+1);\mu+1;\frac{a^{2}}{b^{2}}\right)}}
\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}
0 < a , a < b , ( μ + ν + 1 ) > λ , λ > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ - 1 2 λ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 λ + 1 2 ) > 0 formulae-sequence 0 𝑎 formulae-sequence 𝑎 𝑏 formulae-sequence 𝜇 𝜈 1 𝜆 formulae-sequence 𝜆 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 0 1 2 𝜈 1 2 𝜇 1 2 𝜆 1 2 0 {\displaystyle{\displaystyle 0<a,a<b,\Re\left(\mu+\nu+1\right)>\Re\lambda,\Re% \lambda>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0,\Re(\frac{1}{2}\nu+\frac{1}{2}\mu-% \frac{1}{2}\lambda+\frac{1}{2})>0,\Re(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2% }\lambda+\frac{1}{2})>0}}
int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]
Error Aborted -
Failed [300 / 300]
Result: Complex[0.12507202091813296, -0.11002587193353452]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.017959797138118128, 0.3252875517547388]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E57 0 J μ ( a t ) J ν ( a t ) t λ d t = ( 1 2 a ) λ - 1 Γ ( 1 2 μ + 1 2 ν - 1 2 λ + 1 2 ) Γ ( λ ) 2 Γ ( 1 2 λ + 1 2 ν - 1 2 μ + 1 2 ) Γ ( 1 2 λ + 1 2 μ - 1 2 ν + 1 2 ) Γ ( 1 2 λ + 1 2 μ + 1 2 ν + 1 2 ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑎 𝑡 superscript 𝑡 𝜆 𝑡 superscript 1 2 𝑎 𝜆 1 Euler-Gamma 1 2 𝜇 1 2 𝜈 1 2 𝜆 1 2 Euler-Gamma 𝜆 2 Euler-Gamma 1 2 𝜆 1 2 𝜈 1 2 𝜇 1 2 Euler-Gamma 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 Euler-Gamma 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{J_{\mu}\left(at\right)J_{% \nu}\left(at\right)}{t^{\lambda}}\mathrm{d}t=\frac{(\frac{1}{2}a)^{\lambda-1}% \Gamma\left(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\right% )\Gamma\left(\lambda\right)}{2\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}\nu-% \frac{1}{2}\mu+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}\mu% -\frac{1}{2}\nu+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}% \mu+\frac{1}{2}\nu+\frac{1}{2}\right)}}}
\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}
( μ + ν + 1 ) > λ , λ > 0 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 μ + 1 2 ν - 1 2 λ + 1 2 ) > 0 , ( λ ) > 0 , ( 1 2 λ + 1 2 ν - 1 2 μ + 1 2 ) > 0 , ( 1 2 λ + 1 2 μ - 1 2 ν + 1 2 ) > 0 , ( 1 2 λ + 1 2 μ + 1 2 ν + 1 2 ) > 0 formulae-sequence 𝜇 𝜈 1 𝜆 formulae-sequence 𝜆 0 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜇 1 2 𝜈 1 2 𝜆 1 2 0 formulae-sequence 𝜆 0 formulae-sequence 1 2 𝜆 1 2 𝜈 1 2 𝜇 1 2 0 formulae-sequence 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 0 1 2 𝜆 1 2 𝜇 1 2 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu+1\right)>\Re\lambda,\Re\lambda>0,% \Re((\mu)+k+1)>0,\Re(\nu+k+1)>0,\Re(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}% \lambda+\frac{1}{2})>0,\Re(\lambda)>0,\Re(\frac{1}{2}\lambda+\frac{1}{2}\nu-% \frac{1}{2}\mu+\frac{1}{2})>0,\Re(\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2% }\nu+\frac{1}{2})>0,\Re(\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac% {1}{2})>0}}
int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]
Error Aborted - Skipped - Because timed out
10.22.E58 0 J ν ( a t ) J ν ( b t ) t λ d t = ( a b ) ν Γ ( ν - 1 2 λ + 1 2 ) 2 λ ( a 2 + b 2 ) ν - 1 2 λ + 1 2 Γ ( 1 2 λ + 1 2 ) 𝐅 ( 2 ν + 1 - λ 4 , 2 ν + 3 - λ 4 ; ν + 1 ; 4 a 2 b 2 ( a 2 + b 2 ) 2 ) superscript subscript 0 Bessel-J 𝜈 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 superscript 𝑡 𝜆 𝑡 superscript 𝑎 𝑏 𝜈 Euler-Gamma 𝜈 1 2 𝜆 1 2 superscript 2 𝜆 superscript superscript 𝑎 2 superscript 𝑏 2 𝜈 1 2 𝜆 1 2 Euler-Gamma 1 2 𝜆 1 2 scaled-hypergeometric-bold-F 2 𝜈 1 𝜆 4 2 𝜈 3 𝜆 4 𝜈 1 4 superscript 𝑎 2 superscript 𝑏 2 superscript superscript 𝑎 2 superscript 𝑏 2 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{J_{\nu}\left(at\right)J_{% \nu}\left(bt\right)}{t^{\lambda}}\mathrm{d}t=\frac{(ab)^{\nu}\Gamma\left(\nu-% \frac{1}{2}\lambda+\frac{1}{2}\right)}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{% 2}\lambda+\frac{1}{2}}\Gamma\left(\frac{1}{2}\lambda+\frac{1}{2}\right)}% \mathbf{F}\left(\frac{2\nu+1-\lambda}{4},\frac{2\nu+3-\lambda}{4};\nu+1;\frac{% 4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}\right)}}
\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}
a b , ( 2 ν + 1 ) > λ , λ > - 1 , ( ν + k + 1 ) > 0 , ( ν - 1 2 λ + 1 2 ) > 0 , ( 1 2 λ + 1 2 ) > 0 formulae-sequence 𝑎 𝑏 formulae-sequence 2 𝜈 1 𝜆 formulae-sequence 𝜆 1 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 2 𝜆 1 2 0 1 2 𝜆 1 2 0 {\displaystyle{\displaystyle a\neq b,\Re\left(2\nu+1\right)>\Re\lambda,\Re% \lambda>-1,\Re(\nu+k+1)>0,\Re(\nu-\frac{1}{2}\lambda+\frac{1}{2})>0,\Re(\frac{% 1}{2}\lambda+\frac{1}{2})>0}}
int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)
Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]
Error Aborted -
Failed [209 / 300]
Result: Complex[-0.13393539357334844, 0.1322614378889556]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.07230690300251369, -0.15068591568973605]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
10.22.E66 0 e - a t J ν ( b t ) J ν ( c t ) d t = 1 π ( b c ) 1 2 Q ν - 1 2 ( a 2 + b 2 + c 2 2 b c ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 Bessel-J 𝜈 𝑐 𝑡 𝑡 1 𝜋 superscript 𝑏 𝑐 1 2 shorthand-Legendre-Q-second-kind 𝜈 1 2 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 2 𝑏 𝑐 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}J_{\nu}\left(bt\right)J_{% \nu}\left(ct\right)\mathrm{d}t=\frac{1}{\pi(bc)^{\frac{1}{2}}}\*Q_{\nu-\frac{1% }{2}}\left(\frac{a^{2}+b^{2}+c^{2}}{2bc}\right)}}
\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}
ν > - 1 2 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+k+1)>0}}
int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))
Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]
Error Aborted - Skipped - Because timed out
10.22.E67 0 t exp ( - p 2 t 2 ) J ν ( a t ) J ν ( b t ) d t = 1 2 p 2 exp ( - a 2 + b 2 4 p 2 ) I ν ( a b 2 p 2 ) superscript subscript 0 𝑡 superscript 𝑝 2 superscript 𝑡 2 Bessel-J 𝜈 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 𝑡 1 2 superscript 𝑝 2 superscript 𝑎 2 superscript 𝑏 2 4 superscript 𝑝 2 modified-Bessel-first-kind 𝜈 𝑎 𝑏 2 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t\exp\left(-p^{2}t^{2}\right)J_{% \nu}\left(at\right)J_{\nu}\left(bt\right)\mathrm{d}t=\frac{1}{2p^{2}}\exp\left% (-\frac{a^{2}+b^{2}}{4p^{2}}\right)I_{\nu}\left(\frac{ab}{2p^{2}}\right)}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)
ν > - 1 , ( p 2 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence superscript 𝑝 2 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re\left(p^{2}\right)>0,\Re(\nu+k+1)>0}}
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]
Translation Error Translation Error - -
10.22.E68 0 t exp ( - p 2 t 2 ) J 0 ( a t ) Y 0 ( a t ) d t = - 1 2 π p 2 exp ( - a 2 2 p 2 ) K 0 ( a 2 2 p 2 ) superscript subscript 0 𝑡 superscript 𝑝 2 superscript 𝑡 2 Bessel-J 0 𝑎 𝑡 Bessel-Y-Weber 0 𝑎 𝑡 𝑡 1 2 𝜋 superscript 𝑝 2 superscript 𝑎 2 2 superscript 𝑝 2 modified-Bessel-second-kind 0 superscript 𝑎 2 2 superscript 𝑝 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t\exp\left(-p^{2}t^{2}\right)J_{0% }\left(at\right)Y_{0}\left(at\right)\mathrm{d}t=-\frac{1}{2\pi p^{2}}\exp\left% (-\frac{a^{2}}{2p^{2}}\right)K_{0}\left(\frac{a^{2}}{2p^{2}}\right)}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)
( p 2 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence superscript 𝑝 2 0 formulae-sequence 0 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(p^{2}\right)>0,\Re(0+k+1)>0,\Re((-0)+k+1)% >0}}
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]
Translation Error Translation Error - -
10.22.E70 0 Y ν ( a t ) J ν + 1 ( b t ) t d t t 2 - z 2 = 1 2 π J ν + 1 ( b z ) H ν ( 1 ) ( a z ) superscript subscript 0 Bessel-Y-Weber 𝜈 𝑎 𝑡 Bessel-J 𝜈 1 𝑏 𝑡 𝑡 𝑡 superscript 𝑡 2 superscript 𝑧 2 1 2 𝜋 Bessel-J 𝜈 1 𝑏 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑎 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}Y_{\nu}\left(at\right)J_{\nu+1}% \left(bt\right)\frac{t\mathrm{d}t}{t^{2}-z^{2}}=\frac{1}{2}\pi J_{\nu+1}\left(% bz\right){H^{(1)}_{\nu}}\left(az\right)}}
\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}
a b , b > 0 , ν > - 3 2 , z > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝑎 𝑏 formulae-sequence 𝑏 0 formulae-sequence 𝜈 3 2 formulae-sequence 𝑧 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle a\geq b,b>0,\Re\nu>-\tfrac{3}{2},\Im z>0,\Re((\nu% +1)+k+1)>0,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)
Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]
Error Aborted - Skipped - Because timed out
10.22.E71 0 J μ ( a t ) J ν ( b t ) J ν ( c t ) t 1 - μ d t = ( b c ) μ - 1 ( sin ϕ ) μ - 1 2 ( 2 π ) 1 2 a μ 𝖯 ν - 1 2 1 2 - μ ( cos ϕ ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 Bessel-J 𝜈 𝑐 𝑡 superscript 𝑡 1 𝜇 𝑡 superscript 𝑏 𝑐 𝜇 1 superscript italic-ϕ 𝜇 1 2 superscript 2 𝜋 1 2 superscript 𝑎 𝜇 Ferrers-Legendre-P-first-kind 1 2 𝜇 𝜈 1 2 italic-ϕ {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\mu}\left(at\right)J_{\nu}% \left(bt\right)J_{\nu}\left(ct\right)t^{1-\mu}\mathrm{d}t=\frac{(bc)^{\mu-1}(% \sin\phi)^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\mathsf{P}^{\frac{1}{% 2}-\mu}_{\nu-\frac{1}{2}}(\cos\phi)}}
\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})
μ > - 1 2 , ν > - 1 , | b - c | < a , a < b + c , cos ϕ = ( b 2 + c 2 - a 2 ) / ( 2 b c ) , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜈 1 formulae-sequence 𝑏 𝑐 𝑎 formulae-sequence 𝑎 𝑏 𝑐 formulae-sequence italic-ϕ superscript 𝑏 2 superscript 𝑐 2 superscript 𝑎 2 2 𝑏 𝑐 formulae-sequence 𝜇 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re\nu>-1,|b-c|<a,a<b+c,\cos% \phi=(b^{2}+c^{2}-a^{2})/(2bc),\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0}}
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]
Translation Error Translation Error - -
10.22.E72 0 J μ ( a t ) J ν ( b t ) J ν ( c t ) t 1 - μ d t = ( b c ) μ - 1 sin ( ( μ - ν ) π ) ( sinh χ ) μ - 1 2 ( 1 2 π 3 ) 1 2 a μ e ( μ - 1 2 ) i π Q ν - 1 2 1 2 - μ ( cosh χ ) superscript subscript 0 Bessel-J 𝜇 𝑎 𝑡 Bessel-J 𝜈 𝑏 𝑡 Bessel-J 𝜈 𝑐 𝑡 superscript 𝑡 1 𝜇 𝑡 superscript 𝑏 𝑐 𝜇 1 𝜇 𝜈 superscript 𝜒 𝜇 1 2 superscript 1 2 superscript 𝜋 3 1 2 superscript 𝑎 𝜇 𝜇 1 2 imaginary-unit Legendre-Q-second-kind 1 2 𝜇 𝜈 1 2 𝜒 {\displaystyle{\displaystyle\int_{0}^{\infty}J_{\mu}\left(at\right)J_{\nu}% \left(bt\right)J_{\nu}\left(ct\right)t^{1-\mu}\mathrm{d}t=\frac{(bc)^{\mu-1}% \sin\left((\mu-\nu)\pi\right)(\sinh\chi)^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3% })^{\frac{1}{2}}a^{\mu}}{\mathrm{e}^{(\mu-\frac{1}{2})\mathrm{i}\pi}}Q^{\frac{% 1}{2}-\mu}_{\nu-\frac{1}{2}}\left(\cosh\chi\right)}}
\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}
μ > - 1 2 , ν > - 1 , a > b + c , cosh χ = ( a 2 - b 2 - c 2 ) / ( 2 b c ) , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜈 1 formulae-sequence 𝑎 𝑏 𝑐 formulae-sequence 𝜒 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 2 𝑏 𝑐 formulae-sequence 𝜇 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re\nu>-1,a>b+c,\cosh\chi=(a^% {2}-b^{2}-c^{2})/(2bc),\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0}}
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]
Error Aborted - Skip - No test values generated