9.10: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E1 9.10.E1] | | | [https://dlmf.nist.gov/9.10.E1 9.10.E1] || <math qid="Q2883">\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = z..infinity) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, z, Infinity}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerGi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerGi[z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3430999769-.7863536809e-1*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1173558541-.6113539683*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1173558541-.6113539683*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E2 9.10.E2] | | | [https://dlmf.nist.gov/9.10.E2 9.10.E2] || <math qid="Q2884">\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = - infinity..z) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, - Infinity, z}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerHi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerHi[z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3430999769+.7863536803e-1*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1173558550+.6113539681*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1173558550+.6113539681*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] | | | [https://dlmf.nist.gov/9.10.E3 9.10.E3] || <math qid="Q2885">\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = - infinity..z) = int(AiryBi(t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, - Infinity, z}, GenerateConditions->None] == Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] | | | [https://dlmf.nist.gov/9.10.E3 9.10.E3] || <math qid="Q2885">\int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = 0..z) = Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None] == Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2028158445+.1550535689*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5468682154-.3940689299*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5468682154-.3940689299*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] | | | [https://dlmf.nist.gov/9.10.E3 9.10.E3] || <math qid="Q2885">\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )) = Pi*(AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}]) == Pi*(AiryBi[z]*D[ScorerHi[z], {z, 1}]- D[AiryBi[z], {z, 1}]*ScorerHi[z])</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .843931870+.115991466*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.9844521300+1.906824069*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.9844521300+1.906824069*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10#Ex1 9.10#Ex1] | | | [https://dlmf.nist.gov/9.10#Ex1 9.10#Ex1] || <math qid="Q2893">\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = 0..infinity) = (1)/(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10#Ex2 9.10#Ex2] | | | [https://dlmf.nist.gov/9.10#Ex2 9.10#Ex2] || <math qid="Q2894">\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = - infinity..0) = (2)/(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, - Infinity, 0}, GenerateConditions->None] == Divide[2,3]</syntaxhighlight> || Failure || Successful || Skip - No test values generated || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E12 9.10.E12] | | | [https://dlmf.nist.gov/9.10.E12 9.10.E12] || <math qid="Q2895">\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = - infinity..0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, - Infinity, 0}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E13 9.10.E13] | | | [https://dlmf.nist.gov/9.10.E13 9.10.E13] || <math qid="Q2896">\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(p*t)*AiryAi(t), t = - infinity..infinity) = exp((p)^(3)/3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Exp[(p)^(3)/3]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 5] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E14 9.10.E14] | | | [https://dlmf.nist.gov/9.10.E14 9.10.E14] || <math qid="Q2897">\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryAi(t), t = 0..infinity) = exp(- (p)^(3)/3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/3)* GAMMA((5)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Exp[- (p)^(3)/3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/3)* Gamma[Divide[5,3]]])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E15 9.10.E15] | | | [https://dlmf.nist.gov/9.10.E15 9.10.E15] || <math qid="Q2898">\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryAi(- t), t = 0..infinity) = (1)/(3)*exp((p)^(3)/3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]])</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9+.6037469539*I | ||
Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out | Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E16 9.10.E16] | | | [https://dlmf.nist.gov/9.10.E16 9.10.E16] || <math qid="Q2899">\int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryBi(- t), t = 0..infinity) = (1)/(sqrt(3))*exp((p)^(3)/3)*((GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3)))-(GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryBi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[3]]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]]-Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]])</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5e-9-.1692833917*I | ||
Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out | Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E18 9.10.E18] | | | [https://dlmf.nist.gov/9.10.E18 9.10.E18] || <math qid="Q2901">\AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{2}{3}\pi</math> || <syntaxhighlight lang=mathematica>AiryAi(z) = (3*(z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/(4*Pi)* int(((t)^(- 3/4)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>AiryAi[z] == Divide[3*(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],4*Pi]* Integrate[Divide[(t)^(- 3/4)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 5] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10#Ex3 9.10#Ex3] | | | [https://dlmf.nist.gov/9.10#Ex3 9.10#Ex3] || <math qid="Q2902">\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>AiryAi(z) = ((z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/((2)^(7/2)* Pi)* int(((t)^(- 1/2)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>AiryAi[z] == Divide[(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],(2)^(7/2)* Pi]* Integrate[Divide[(t)^(- 1/2)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E20 9.10.E20] | | | [https://dlmf.nist.gov/9.10.E20 9.10.E20] || <math qid="Q2905">\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int(AiryAi(t), t = 0..v), v = 0..x) = x*int(AiryAi(t), t = 0..x)- diff( AiryAi(x), x$(1) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[AiryAi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryAi[t], {t, 0, x}, GenerateConditions->None]- D[AiryAi[x], {x, 1}]+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.10.E21 9.10.E21] | | | [https://dlmf.nist.gov/9.10.E21 9.10.E21] || <math qid="Q2906">\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int(AiryBi(t), t = 0..v), v = 0..x) = x*int(AiryBi(t), t = 0..x)- diff( AiryBi(x), x$(1) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[AiryBi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryBi[t], {t, 0, x}, GenerateConditions->None]- D[AiryBi[x], {x, 1}]+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:21, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
9.10.E1 | \int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right) |
|
int(AiryAi(t), t = z..infinity) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))))
|
Integrate[AiryAi[t], {t, z, Infinity}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerGi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerGi[z])
|
Failure | Failure | Failed [7 / 7] Result: -.3430999769-.7863536809e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: .1173558541-.6113539683*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] |
9.10.E2 | \int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right) |
|
int(AiryAi(t), t = - infinity..z) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))
|
Integrate[AiryAi[t], {t, - Infinity, z}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerHi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerHi[z])
|
Failure | Failure | Failed [7 / 7] Result: .3430999769+.7863536803e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: -.1173558550+.6113539681*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] |
9.10.E3 | \int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t} |
|
int(AiryBi(t), t = - infinity..z) = int(AiryBi(t), t = 0..z)
|
Integrate[AiryBi[t], {t, - Infinity, z}, GenerateConditions->None] == Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
9.10.E3 | \int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ |
|
int(AiryBi(t), t = 0..z) = Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) ))
|
Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None] == Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}])
|
Failure | Failure | Failed [7 / 7] Result: -.2028158445+.1550535689*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: .5468682154-.3940689299*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] |
9.10.E3 | \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right) |
|
Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )) = Pi*(AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))
|
Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}]) == Pi*(AiryBi[z]*D[ScorerHi[z], {z, 1}]- D[AiryBi[z], {z, 1}]*ScorerHi[z])
|
Failure | Successful | Failed [7 / 7] Result: .843931870+.115991466*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: -.9844521300+1.906824069*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] |
9.10#Ex1 | \int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3} |
|
int(AiryAi(t), t = 0..infinity) = (1)/(3)
|
Integrate[AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]
|
Successful | Successful | - | Successful [Tested: 1] |
9.10#Ex2 | \int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3} |
|
int(AiryAi(t), t = - infinity..0) = (2)/(3)
|
Integrate[AiryAi[t], {t, - Infinity, 0}, GenerateConditions->None] == Divide[2,3]
|
Failure | Successful | Skip - No test values generated | Successful [Tested: 1] |
9.10.E12 | \int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0 |
|
int(AiryBi(t), t = - infinity..0) = 0
|
Integrate[AiryBi[t], {t, - Infinity, 0}, GenerateConditions->None] == 0
|
Successful | Successful | - | Successful [Tested: 1] |
9.10.E13 | \int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3} |
int(exp(p*t)*AiryAi(t), t = - infinity..infinity) = exp((p)^(3)/3)
|
Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Exp[(p)^(3)/3]
|
Failure | Aborted | Successful [Tested: 5] | Skipped - Because timed out | |
9.10.E14 | \int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right) |
|
int(exp(- p*t)*AiryAi(t), t = 0..infinity) = exp(- (p)^(3)/3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/3)* GAMMA((5)/(3))))
|
Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Exp[- (p)^(3)/3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/3)* Gamma[Divide[5,3]]])
|
Successful | Successful | - | Successful [Tested: 1] |
9.10.E15 | \int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)} |
int(exp(- p*t)*AiryAi(- t), t = 0..infinity) = (1)/(3)*exp((p)^(3)/3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3))))
|
Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]])
|
Failure | Aborted | Failed [1 / 5] Result: -.1e-9+.6037469539*I
Test Values: {p = 1/2-1/2*I*3^(1/2)}
|
Skipped - Because timed out | |
9.10.E16 | \int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)} |
int(exp(- p*t)*AiryBi(- t), t = 0..infinity) = (1)/(sqrt(3))*exp((p)^(3)/3)*((GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3)))-(GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3))))
|
Integrate[Exp[- p*t]*AiryBi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[3]]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]]-Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]])
|
Failure | Aborted | Failed [1 / 5] Result: -.5e-9-.1692833917*I
Test Values: {p = 1/2-1/2*I*3^(1/2)}
|
Skipped - Because timed out | |
9.10.E18 | \AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t} |
AiryAi(z) = (3*(z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/(4*Pi)* int(((t)^(- 3/4)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)
|
AiryAi[z] == Divide[3*(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],4*Pi]* Integrate[Divide[(t)^(- 3/4)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 5] | Skipped - Because timed out | |
9.10#Ex3 | \AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t} |
|
AiryAi(z) = ((z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/((2)^(7/2)* Pi)* int(((t)^(- 1/2)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)
|
AiryAi[z] == Divide[(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],(2)^(7/2)* Pi]* Integrate[Divide[(t)^(- 1/2)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Error | Skipped - Because timed out |
9.10.E20 | \int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0} |
|
int(int(AiryAi(t), t = 0..v), v = 0..x) = x*int(AiryAi(t), t = 0..x)- diff( AiryAi(x), x$(1) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) )
|
Integrate[Integrate[AiryAi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryAi[t], {t, 0, x}, GenerateConditions->None]- D[AiryAi[x], {x, 1}]+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0)
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
9.10.E21 | \int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0} |
|
int(int(AiryBi(t), t = 0..v), v = 0..x) = x*int(AiryBi(t), t = 0..x)- diff( AiryBi(x), x$(1) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) )
|
Integrate[Integrate[AiryBi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryBi[t], {t, 0, x}, GenerateConditions->None]- D[AiryBi[x], {x, 1}]+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0)
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |