7.11: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/7.11.E1 7.11.E1] || [[Item:Q2403|<math>\erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erf(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], 0, (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .756123263e-1-.1955582163*I
| [https://dlmf.nist.gov/7.11.E1 7.11.E1] || <math qid="Q2403">\erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erf(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], 0, (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .756123263e-1-.1955582163*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.938247417+2.376161732*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.938247417+2.376161732*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.955452759718527, 1.7141217559576072]
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.955452759718527, 1.7141217559576072]
Line 20: Line 20:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.11.E2 7.11.E2] || [[Item:Q2404|<math>\erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erfc(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.955452760-1.714121756*I
| [https://dlmf.nist.gov/7.11.E2 7.11.E2] || <math qid="Q2404">\erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erfc(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.955452760-1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.9554527597185267, -1.7141217559576072]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.9554527597185267, -1.7141217559576072]
Line 26: Line 26:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.11.E3 7.11.E3] || [[Item:Q2405|<math>\erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erfc(z) = (z)/(sqrt(Pi))*Ei((1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[z,Sqrt[Pi]]*ExpIntegralE[Divide[1,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.000000000+.1e-9*I
| [https://dlmf.nist.gov/7.11.E3 7.11.E3] || <math qid="Q2405">\erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erfc(z) = (z)/(sqrt(Pi))*Ei((1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[z,Sqrt[Pi]]*ExpIntegralE[Divide[1,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.000000000+.1e-9*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.000000000+.1e-9*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.000000000+.1e-9*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.0000000000000004, -7.771561172376096*^-16]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.0000000000000004, -7.771561172376096*^-16]
Line 32: Line 32:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.11.E4 7.11.E4] || [[Item:Q2406|<math>\erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erf(z) = (2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[z] == Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/7.11.E4 7.11.E4] || <math qid="Q2406">\erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erf(z) = (2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[z] == Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/7.11.E4 7.11.E4] || [[Item:Q2406|<math>\frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2)) = (2*z)/(sqrt(Pi))*exp(- (z)^(2))*KummerM(1, (3)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[2*z,Sqrt[Pi]]*Exp[- (z)^(2)]*Hypergeometric1F1[1, Divide[3,2], (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/7.11.E4 7.11.E4] || <math qid="Q2406">\frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2)) = (2*z)/(sqrt(Pi))*exp(- (z)^(2))*KummerM(1, (3)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[2*z,Sqrt[Pi]]*Exp[- (z)^(2)]*Hypergeometric1F1[1, Divide[3,2], (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/7.11.E5 7.11.E5] || [[Item:Q2407|<math>\erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erfc(z) = (1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.955452760-1.714121756*I
| [https://dlmf.nist.gov/7.11.E5 7.11.E5] || <math qid="Q2407">\erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erfc(z) = (1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.955452760-1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.9554527597185267, -1.7141217559576072]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.9554527597185267, -1.7141217559576072]
Line 42: Line 42:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.11.E5 7.11.E5] || [[Item:Q2407|<math>\frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2)) = (z)/(sqrt(Pi))*exp(- (z)^(2))*KummerU(1, (3)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Divide[z,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[1, Divide[3,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4454723945e-1+1.714121756*I
| [https://dlmf.nist.gov/7.11.E5 7.11.E5] || <math qid="Q2407">\frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2)) = (z)/(sqrt(Pi))*exp(- (z)^(2))*KummerU(1, (3)/(2), (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Divide[z,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[1, Divide[3,2], (z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4454723945e-1+1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1957717634-.5063298372*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1957717634-.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.04454724028147337, 1.7141217559576065]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.04454724028147337, 1.7141217559576065]
Line 48: Line 48:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.11.E6 7.11.E6] || [[Item:Q2408|<math>\Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelC(z)+ I*FresnelS(z) = z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelC[z]+ I*FresnelS[z] == z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/7.11.E6 7.11.E6] || <math qid="Q2408">\Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelC(z)+ I*FresnelS(z) = z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelC[z]+ I*FresnelS[z] == z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/7.11.E6 7.11.E6] || [[Item:Q2408|<math>z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2)) = z*exp(Pi*I*(z)^(2)/2)*KummerM(1, (3)/(2), -(1)/(2)*Pi*I*(z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)] == z*Exp[Pi*I*(z)^(2)/2]*Hypergeometric1F1[1, Divide[3,2], -Divide[1,2]*Pi*I*(z)^(2)]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
| [https://dlmf.nist.gov/7.11.E6 7.11.E6] || <math qid="Q2408">z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2)) = z*exp(Pi*I*(z)^(2)/2)*KummerM(1, (3)/(2), -(1)/(2)*Pi*I*(z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)] == z*Exp[Pi*I*(z)^(2)/2]*Hypergeometric1F1[1, Divide[3,2], -Divide[1,2]*Pi*I*(z)^(2)]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/7.11.E7 7.11.E7] || [[Item:Q2409|<math>\Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelC(z) = z*hypergeom([(1)/(4)], [(5)/(4),(1)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelC[z] == z*HypergeometricPFQ[{Divide[1,4]}, {Divide[5,4],Divide[1,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/7.11.E7 7.11.E7] || <math qid="Q2409">\Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelC(z) = z*hypergeom([(1)/(4)], [(5)/(4),(1)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelC[z] == z*HypergeometricPFQ[{Divide[1,4]}, {Divide[5,4],Divide[1,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/7.11.E8 7.11.E8] || [[Item:Q2410|<math>\Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelS(z) = (1)/(6)*Pi*(z)^(3)* hypergeom([(3)/(4)], [(7)/(4),(3)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelS[z] == Divide[1,6]*Pi*(z)^(3)* HypergeometricPFQ[{Divide[3,4]}, {Divide[7,4],Divide[3,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/7.11.E8 7.11.E8] || <math qid="Q2410">\Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelS(z) = (1)/(6)*Pi*(z)^(3)* hypergeom([(3)/(4)], [(7)/(4),(3)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelS[z] == Divide[1,6]*Pi*(z)^(3)* HypergeometricPFQ[{Divide[3,4]}, {Divide[7,4],Divide[3,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|}
|}
</div>
</div>

Latest revision as of 11:16, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
7.11.E1 erf z = 1 π γ ( 1 2 , z 2 ) error-function 𝑧 1 𝜋 incomplete-gamma 1 2 superscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{erf}z=\frac{1}{\sqrt{\pi}}\gamma% \left(\tfrac{1}{2},z^{2}\right)}}
\erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}}

erf(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2))
Erf[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], 0, (z)^(2)]
Failure Failure
Failed [7 / 7]
Result: .756123263e-1-.1955582163*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -1.938247417+2.376161732*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [2 / 7]
Result: Complex[-1.955452759718527, 1.7141217559576072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-1.8042282364091204, -0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

7.11.E2 erfc z = 1 π Γ ( 1 2 , z 2 ) complementary-error-function 𝑧 1 𝜋 incomplete-Gamma 1 2 superscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{erfc}z=\frac{1}{\sqrt{\pi}}\Gamma% \left(\tfrac{1}{2},z^{2}\right)}}
\erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}}

erfc(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2), (z)^(2))
Erfc[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], (z)^(2)]
Failure Failure
Failed [2 / 7]
Result: 1.955452760-1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[1.9554527597185267, -1.7141217559576072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.8042282364091202, 0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

7.11.E3 erfc z = z π E 1 2 ( z 2 ) complementary-error-function 𝑧 𝑧 𝜋 exponential-integral-En 1 2 superscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{erfc}z=\frac{z}{\sqrt{\pi}}E_{\frac{% 1}{2}}\left(z^{2}\right)}}
\erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}}

erfc(z) = (z)/(sqrt(Pi))*Ei((1)/(2), (z)^(2))
Erfc[z] == Divide[z,Sqrt[Pi]]*ExpIntegralE[Divide[1,2], (z)^(2)]
Failure Failure
Failed [2 / 7]
Result: 2.000000000+.1e-9*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: 2.000000000+.1e-9*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[2.0000000000000004, -7.771561172376096*^-16]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.9999999999999998, -5.551115123125783*^-17]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

7.11.E4 erf z = 2 z π M ( 1 2 , 3 2 , - z 2 ) error-function 𝑧 2 𝑧 𝜋 Kummer-confluent-hypergeometric-M 1 2 3 2 superscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{erf}z=\frac{2z}{\sqrt{\pi}}M\left(% \tfrac{1}{2},\tfrac{3}{2},-z^{2}\right)}}
\erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}}

erf(z) = (2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2))
Erf[z] == Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)]
Successful Successful - Successful [Tested: 7]
7.11.E4 2 z π M ( 1 2 , 3 2 , - z 2 ) = 2 z π e - z 2 M ( 1 , 3 2 , z 2 ) 2 𝑧 𝜋 Kummer-confluent-hypergeometric-M 1 2 3 2 superscript 𝑧 2 2 𝑧 𝜋 superscript 𝑒 superscript 𝑧 2 Kummer-confluent-hypergeometric-M 1 3 2 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{2z}{\sqrt{\pi}}M\left(\tfrac{1}{2},\tfrac{3}% {2},-z^{2}\right)=\frac{2z}{\sqrt{\pi}}e^{-z^{2}}M\left(1,\tfrac{3}{2},z^{2}% \right)}}
\frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}}

(2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2)) = (2*z)/(sqrt(Pi))*exp(- (z)^(2))*KummerM(1, (3)/(2), (z)^(2))
Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[2*z,Sqrt[Pi]]*Exp[- (z)^(2)]*Hypergeometric1F1[1, Divide[3,2], (z)^(2)]
Successful Successful - Successful [Tested: 7]
7.11.E5 erfc z = 1 π e - z 2 U ( 1 2 , 1 2 , z 2 ) complementary-error-function 𝑧 1 𝜋 superscript 𝑒 superscript 𝑧 2 Kummer-confluent-hypergeometric-U 1 2 1 2 superscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{erfc}z=\frac{1}{\sqrt{\pi}}e^{-z^{2}% }U\left(\tfrac{1}{2},\tfrac{1}{2},z^{2}\right)}}
\erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}

erfc(z) = (1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2))
Erfc[z] == Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)]
Failure Failure
Failed [2 / 7]
Result: 1.955452760-1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: 1.804228236+.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[1.9554527597185267, -1.7141217559576072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.8042282364091202, 0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

7.11.E5 1 π e - z 2 U ( 1 2 , 1 2 , z 2 ) = z π e - z 2 U ( 1 , 3 2 , z 2 ) 1 𝜋 superscript 𝑒 superscript 𝑧 2 Kummer-confluent-hypergeometric-U 1 2 1 2 superscript 𝑧 2 𝑧 𝜋 superscript 𝑒 superscript 𝑧 2 Kummer-confluent-hypergeometric-U 1 3 2 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{1}{\sqrt{\pi}}e^{-z^{2}}U\left(\tfrac{1}{2},% \tfrac{1}{2},z^{2}\right)=\frac{z}{\sqrt{\pi}}e^{-z^{2}}U\left(1,\tfrac{3}{2},% z^{2}\right)}}
\frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}}

(1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2)) = (z)/(sqrt(Pi))*exp(- (z)^(2))*KummerU(1, (3)/(2), (z)^(2))
Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Divide[z,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[1, Divide[3,2], (z)^(2)]
Failure Failure
Failed [2 / 7]
Result: .4454723945e-1+1.714121756*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .1957717634-.5063298372*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[0.04454724028147337, 1.7141217559576065]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.19577176359087947, -0.5063298374329108]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

7.11.E6 C ( z ) + i S ( z ) = z M ( 1 2 , 3 2 , 1 2 π i z 2 ) Fresnel-cosine-integral 𝑧 𝑖 Fresnel-sine-integral 𝑧 𝑧 Kummer-confluent-hypergeometric-M 1 2 3 2 1 2 𝜋 𝑖 superscript 𝑧 2 {\displaystyle{\displaystyle C\left(z\right)+iS\left(z\right)=zM\left(\tfrac{1% }{2},\tfrac{3}{2},\tfrac{1}{2}\pi iz^{2}\right)}}
\Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}}

FresnelC(z)+ I*FresnelS(z) = z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2))
FresnelC[z]+ I*FresnelS[z] == z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
7.11.E6 z M ( 1 2 , 3 2 , 1 2 π i z 2 ) = z e π i z 2 / 2 M ( 1 , 3 2 , - 1 2 π i z 2 ) 𝑧 Kummer-confluent-hypergeometric-M 1 2 3 2 1 2 𝜋 𝑖 superscript 𝑧 2 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑧 2 2 Kummer-confluent-hypergeometric-M 1 3 2 1 2 𝜋 𝑖 superscript 𝑧 2 {\displaystyle{\displaystyle zM\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{1}{2}\pi iz% ^{2}\right)=ze^{\pi iz^{2}/2}M\left(1,\tfrac{3}{2},-\tfrac{1}{2}\pi iz^{2}% \right)}}
z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}}

z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2)) = z*exp(Pi*I*(z)^(2)/2)*KummerM(1, (3)/(2), -(1)/(2)*Pi*I*(z)^(2))
z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)] == z*Exp[Pi*I*(z)^(2)/2]*Hypergeometric1F1[1, Divide[3,2], -Divide[1,2]*Pi*I*(z)^(2)]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
7.11.E7 C ( z ) = z F 2 1 ( 1 4 ; 5 4 , 1 2 ; - 1 16 π 2 z 4 ) Fresnel-cosine-integral 𝑧 𝑧 Gauss-hypergeometric-pFq 1 2 1 4 5 4 1 2 1 16 superscript 𝜋 2 superscript 𝑧 4 {\displaystyle{\displaystyle C\left(z\right)=z{{}_{1}F_{2}}\left(\tfrac{1}{4};% \tfrac{5}{4},\tfrac{1}{2};-\tfrac{1}{16}\pi^{2}z^{4}\right)}}
\Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}

FresnelC(z) = z*hypergeom([(1)/(4)], [(5)/(4),(1)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))
FresnelC[z] == z*HypergeometricPFQ[{Divide[1,4]}, {Divide[5,4],Divide[1,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]
Successful Successful - Successful [Tested: 7]
7.11.E8 S ( z ) = 1 6 π z 3 F 2 1 ( 3 4 ; 7 4 , 3 2 ; - 1 16 π 2 z 4 ) Fresnel-sine-integral 𝑧 1 6 𝜋 superscript 𝑧 3 Gauss-hypergeometric-pFq 1 2 3 4 7 4 3 2 1 16 superscript 𝜋 2 superscript 𝑧 4 {\displaystyle{\displaystyle S\left(z\right)=\tfrac{1}{6}\pi z^{3}{{}_{1}F_{2}% }\left(\tfrac{3}{4};\tfrac{7}{4},\tfrac{3}{2};-\tfrac{1}{16}\pi^{2}z^{4}\right% )}}
\Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}

FresnelS(z) = (1)/(6)*Pi*(z)^(3)* hypergeom([(3)/(4)], [(7)/(4),(3)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4))
FresnelS[z] == Divide[1,6]*Pi*(z)^(3)* HypergeometricPFQ[{Divide[3,4]}, {Divide[7,4],Divide[3,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)]
Successful Successful - Successful [Tested: 7]