7.6: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E1 7.6.E1] | | | [https://dlmf.nist.gov/7.6.E1 7.6.E1] || <math qid="Q2360">\erf@@{z} = \frac{2}{\sqrt{\pi}}\sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{n!(2n+1)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{z} = \frac{2}{\sqrt{\pi}}\sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{n!(2n+1)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erf(z) = (2)/(sqrt(Pi))*sum(((- 1)^(n)* (z)^(2*n + 1))/(factorial(n)*(2*n + 1)), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[z] == Divide[2,Sqrt[Pi]]*Sum[Divide[(- 1)^(n)* (z)^(2*n + 1),(n)!*(2*n + 1)], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E2 7.6.E2] | | | [https://dlmf.nist.gov/7.6.E2 7.6.E2] || <math qid="Q2361">\erf@@{z} = \frac{2}{\sqrt{\pi}}e^{-z^{2}}\sum_{n=0}^{\infty}\frac{2^{n}z^{2n+1}}{1\cdot 3\cdots(2n+1)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{z} = \frac{2}{\sqrt{\pi}}e^{-z^{2}}\sum_{n=0}^{\infty}\frac{2^{n}z^{2n+1}}{1\cdot 3\cdots(2n+1)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>erf(z) = (2)/(sqrt(Pi))*exp(- (z)^(2))*sum(((2)^(n)* (z)^(2*n + 1))/(1 * 3*(2*n + 1)), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[z] == Divide[2,Sqrt[Pi]]*Exp[- (z)^(2)]*Sum[Divide[(2)^(n)* (z)^(2*n + 1),1 * 3*(2*n + 1)], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7078919422+.2093474075*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5779386350+.6643773058*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5779386350+.6643773058*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7078919419896831, 0.20934740753145048] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7078919419896831, 0.20934740753145048] | ||
Line 22: | Line 22: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E4 7.6.E4] | | | [https://dlmf.nist.gov/7.6.E4 7.6.E4] || <math qid="Q2363">\Fresnelcosint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n}}{(2n)!(4n+1)}z^{4n+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelcosint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n}}{(2n)!(4n+1)}z^{4n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelC(z) = sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n))/(factorial(2*n)*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelC[z] == Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n),(2*n)!*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E5 7.6.E5] | | | [https://dlmf.nist.gov/7.6.E5 7.6.E5] || <math qid="Q2364">\Fresnelcosint@{z} = \cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelcosint@{z} = \cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelC(z) = cos((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n))/(1 * 3*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity)+ sin((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n + 1))/(1 * 3*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelC[z] == Cos[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n),1 * 3*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n + 1),1 * 3*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6549946728+.3747413995*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3747413995+.6549946728*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3747413995+.6549946728*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6549946726974499, 0.37474139987534255] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6549946726974499, 0.37474139987534255] | ||
Line 30: | Line 30: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E6 7.6.E6] | | | [https://dlmf.nist.gov/7.6.E6 7.6.E6] || <math qid="Q2365">\Fresnelsinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n+1}}{(2n+1)!(4n+3)}z^{4n+3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelsinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n+1}}{(2n+1)!(4n+3)}z^{4n+3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelS(z) = sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n + 1))/(factorial(2*n + 1)*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelS[z] == Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n + 1),(2*n + 1)!*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E7 7.6.E7] | | | [https://dlmf.nist.gov/7.6.E7 7.6.E7] || <math qid="Q2366">\Fresnelsinint@{z} = -\cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelsinint@{z} = -\cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>FresnelS(z) = - cos((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n + 1))/(1 * 3*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity)+ sin((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n))/(1 * 3*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelS[z] == - Cos[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n + 1),1 * 3*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n),1 * 3*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .306970168e-1+.2085514294*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2085514294-.306970168e-1*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2085514294-.306970168e-1*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.030697016764588636, 0.2085514288007122] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.030697016764588636, 0.2085514288007122] | ||
Line 38: | Line 38: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E8 7.6.E8] | | | [https://dlmf.nist.gov/7.6.E8 7.6.E8] || <math qid="Q2367">\erf@@{z} = \frac{2z}{\sqrt{\pi}}\sum_{n=0}^{\infty}(-1)^{n}\left(\modsphBesseli{1}{2n}@{z^{2}}-\modsphBesseli{1}{2n+1}@{z^{2}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{z} = \frac{2z}{\sqrt{\pi}}\sum_{n=0}^{\infty}(-1)^{n}\left(\modsphBesseli{1}{2n}@{z^{2}}-\modsphBesseli{1}{2n+1}@{z^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[z] == Divide[2*z,Sqrt[Pi]]*Sum[(- 1)^(n)*(Sqrt[Divide[Pi, (z)^(2)]/2] BesselI[(-1)^(1-1)*(2*n + 1/2), 2*n]- Sqrt[Divide[Pi, (z)^(2)]/2] BesselI[(-1)^(1-1)*(2*n + 1 + 1/2), 2*n + 1]), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.90211411820456, 0.25316491871645536], Times[Complex[-0.9772050238058398, -0.5641895835477562], NSum[Times[Power[-1, n], Plus[Times[Power[Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[2, n]], Times[2, n]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[3, 2], Times[2, n]], Plus[1, Times[2, n]]]]]] | ||
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9777263798592635, 0.8570608779788039], Times[Complex[0.5641895835477561, -0.9772050238058398], NSum[Times[Power[-1, n], Plus[Times[Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[2, n]], Times[2, n]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[3, 2], Times[2, n]], Plus[1, Times[2, n]]]]]] | Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9777263798592635, 0.8570608779788039], Times[Complex[0.5641895835477561, -0.9772050238058398], NSum[Times[Power[-1, n], Plus[Times[Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[2, n]], Times[2, n]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[3, 2], Times[2, n]], Plus[1, Times[2, n]]]]]] | ||
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E9 7.6.E9] | | | [https://dlmf.nist.gov/7.6.E9 7.6.E9] || <math qid="Q2368">\erf@{az} = \frac{2z}{\sqrt{\pi}}e^{(\frac{1}{2}-a^{2})z^{2}}\sum_{n=0}^{\infty}\ChebyshevpolyT{2n+1}@{a}\modsphBesseli{1}{n}@{\tfrac{1}{2}z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@{az} = \frac{2z}{\sqrt{\pi}}e^{(\frac{1}{2}-a^{2})z^{2}}\sum_{n=0}^{\infty}\ChebyshevpolyT{2n+1}@{a}\modsphBesseli{1}{n}@{\tfrac{1}{2}z^{2}}</syntaxhighlight> || <math>-1 \leq a, a \leq 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[a*z] == Divide[2*z,Sqrt[Pi]]*Exp[(Divide[1,2]- (a)^(2))*(z)^(2)]*Sum[ChebyshevT[2*n + 1, a]*Sqrt[Divide[Pi, Divide[1,2]*(z)^(2)]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E10 7.6.E10] | | | [https://dlmf.nist.gov/7.6.E10 7.6.E10] || <math qid="Q2369">\Fresnelcosint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n}@{\tfrac{1}{2}\pi z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelcosint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n}@{\tfrac{1}{2}\pi z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelC[z] == z*Sum[SphericalBesselJ[2*n, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.6.E11 7.6.E11] | | | [https://dlmf.nist.gov/7.6.E11 7.6.E11] || <math qid="Q2370">\Fresnelsinint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n+1}@{\tfrac{1}{2}\pi z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Fresnelsinint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n+1}@{\tfrac{1}{2}\pi z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelS[z] == z*Sum[SphericalBesselJ[2*n + 1, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:15, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.6.E1 | \erf@@{z} = \frac{2}{\sqrt{\pi}}\sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{n!(2n+1)} |
|
erf(z) = (2)/(sqrt(Pi))*sum(((- 1)^(n)* (z)^(2*n + 1))/(factorial(n)*(2*n + 1)), n = 0..infinity)
|
Erf[z] == Divide[2,Sqrt[Pi]]*Sum[Divide[(- 1)^(n)* (z)^(2*n + 1),(n)!*(2*n + 1)], {n, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.6.E2 | \erf@@{z} = \frac{2}{\sqrt{\pi}}e^{-z^{2}}\sum_{n=0}^{\infty}\frac{2^{n}z^{2n+1}}{1\cdot 3\cdots(2n+1)} |
|
erf(z) = (2)/(sqrt(Pi))*exp(- (z)^(2))*sum(((2)^(n)* (z)^(2*n + 1))/(1 * 3*(2*n + 1)), n = 0..infinity)
|
Erf[z] == Divide[2,Sqrt[Pi]]*Exp[- (z)^(2)]*Sum[Divide[(2)^(n)* (z)^(2*n + 1),1 * 3*(2*n + 1)], {n, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: .7078919422+.2093474075*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: -.5779386350+.6643773058*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.7078919419896831, 0.20934740753145048]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.5779386346997313, 0.6643773053985802]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.6.E4 | \Fresnelcosint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n}}{(2n)!(4n+1)}z^{4n+1} |
|
FresnelC(z) = sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n))/(factorial(2*n)*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity)
|
FresnelC[z] == Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n),(2*n)!*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.6.E5 | \Fresnelcosint@{z} = \cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3} |
|
FresnelC(z) = cos((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n))/(1 * 3*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity)+ sin((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n + 1))/(1 * 3*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity)
|
FresnelC[z] == Cos[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n),1 * 3*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n + 1),1 * 3*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: .6549946728+.3747413995*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: -.3747413995+.6549946728*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.6549946726974499, 0.37474139987534255]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.37474139987534216, 0.6549946726974494]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.6.E6 | \Fresnelsinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n+1}}{(2n+1)!(4n+3)}z^{4n+3} |
|
FresnelS(z) = sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n + 1))/(factorial(2*n + 1)*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity)
|
FresnelS[z] == Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n + 1),(2*n + 1)!*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
7.6.E7 | \Fresnelsinint@{z} = -\cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1} |
|
FresnelS(z) = - cos((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n + 1))/(1 * 3*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity)+ sin((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n))/(1 * 3*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity)
|
FresnelS[z] == - Cos[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n + 1),1 * 3*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n),1 * 3*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: .306970168e-1+.2085514294*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: .2085514294-.306970168e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.030697016764588636, 0.2085514288007122]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.2085514288007118, -0.030697016764589136]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.6.E8 | \erf@@{z} = \frac{2z}{\sqrt{\pi}}\sum_{n=0}^{\infty}(-1)^{n}\left(\modsphBesseli{1}{2n}@{z^{2}}-\modsphBesseli{1}{2n+1}@{z^{2}}\right) |
|
Error
|
Erf[z] == Divide[2*z,Sqrt[Pi]]*Sum[(- 1)^(n)*(Sqrt[Divide[Pi, (z)^(2)]/2] BesselI[(-1)^(1-1)*(2*n + 1/2), 2*n]- Sqrt[Divide[Pi, (z)^(2)]/2] BesselI[(-1)^(1-1)*(2*n + 1 + 1/2), 2*n + 1]), {n, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[0.90211411820456, 0.25316491871645536], Times[Complex[-0.9772050238058398, -0.5641895835477562], NSum[Times[Power[-1, n], Plus[Times[Power[Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[2, n]], Times[2, n]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[3, 2], Times[2, n]], Plus[1, Times[2, n]]]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.9777263798592635, 0.8570608779788039], Times[Complex[0.5641895835477561, -0.9772050238058398], NSum[Times[Power[-1, n], Plus[Times[Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[2, n]], Times[2, n]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[3, 2], Times[2, n]], Plus[1, Times[2, n]]]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.6.E9 | \erf@{az} = \frac{2z}{\sqrt{\pi}}e^{(\frac{1}{2}-a^{2})z^{2}}\sum_{n=0}^{\infty}\ChebyshevpolyT{2n+1}@{a}\modsphBesseli{1}{n}@{\tfrac{1}{2}z^{2}} |
Error
|
Erf[a*z] == Divide[2*z,Sqrt[Pi]]*Exp[(Divide[1,2]- (a)^(2))*(z)^(2)]*Sum[ChebyshevT[2*n + 1, a]*Sqrt[Divide[Pi, Divide[1,2]*(z)^(2)]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], {n, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out | |
7.6.E10 | \Fresnelcosint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n}@{\tfrac{1}{2}\pi z^{2}} |
|
Error
|
FresnelC[z] == z*Sum[SphericalBesselJ[2*n, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
7.6.E11 | \Fresnelsinint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n+1}@{\tfrac{1}{2}\pi z^{2}} |
|
Error
|
FresnelS[z] == z*Sum[SphericalBesselJ[2*n + 1, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |