4.35: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E1 4.35.E1] | | | [https://dlmf.nist.gov/4.35.E1 4.35.E1] || <math qid="Q1875">\sinh@{u+ v} = \sinh@@{u}\cosh@@{v}+\cosh@@{u}\sinh@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{u+ v} = \sinh@@{u}\cosh@@{v}+\cosh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u + v) = sinh(u)*cosh(v)+ cosh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u + v] == Sinh[u]*Cosh[v]+ Cosh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E1 4.35.E1] | | | [https://dlmf.nist.gov/4.35.E1 4.35.E1] || <math qid="Q1875">\sinh@{u- v} = \sinh@@{u}\cosh@@{v}-\cosh@@{u}\sinh@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{u- v} = \sinh@@{u}\cosh@@{v}-\cosh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u - v) = sinh(u)*cosh(v)- cosh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u - v] == Sinh[u]*Cosh[v]- Cosh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E2 4.35.E2] | | | [https://dlmf.nist.gov/4.35.E2 4.35.E2] || <math qid="Q1876">\cosh@{u+ v} = \cosh@@{u}\cosh@@{v}+\sinh@@{u}\sinh@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{u+ v} = \cosh@@{u}\cosh@@{v}+\sinh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u + v) = cosh(u)*cosh(v)+ sinh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u + v] == Cosh[u]*Cosh[v]+ Sinh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E2 4.35.E2] | | | [https://dlmf.nist.gov/4.35.E2 4.35.E2] || <math qid="Q1876">\cosh@{u- v} = \cosh@@{u}\cosh@@{v}-\sinh@@{u}\sinh@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{u- v} = \cosh@@{u}\cosh@@{v}-\sinh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u - v) = cosh(u)*cosh(v)- sinh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u - v] == Cosh[u]*Cosh[v]- Sinh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E3 4.35.E3] | | | [https://dlmf.nist.gov/4.35.E3 4.35.E3] || <math qid="Q1877">\tanh@{u+ v} = \frac{\tanh@@{u}+\tanh@@{v}}{1+\tanh@@{u}\tanh@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{u+ v} = \frac{\tanh@@{u}+\tanh@@{v}}{1+\tanh@@{u}\tanh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u + v) = (tanh(u)+ tanh(v))/(1 + tanh(u)*tanh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u + v] == Divide[Tanh[u]+ Tanh[v],1 + Tanh[u]*Tanh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E3 4.35.E3] | | | [https://dlmf.nist.gov/4.35.E3 4.35.E3] || <math qid="Q1877">\tanh@{u- v} = \frac{\tanh@@{u}-\tanh@@{v}}{1-\tanh@@{u}\tanh@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{u- v} = \frac{\tanh@@{u}-\tanh@@{v}}{1-\tanh@@{u}\tanh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u - v) = (tanh(u)- tanh(v))/(1 - tanh(u)*tanh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u - v] == Divide[Tanh[u]- Tanh[v],1 - Tanh[u]*Tanh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E4 4.35.E4] | | | [https://dlmf.nist.gov/4.35.E4 4.35.E4] || <math qid="Q1878">\coth@{u+ v} = \frac{+\coth@@{u}\coth@@{v}+1}{\coth@@{u}+\coth@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@{u+ v} = \frac{+\coth@@{u}\coth@@{v}+1}{\coth@@{u}+\coth@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u + v) = (+ coth(u)*coth(v)+ 1)/(coth(u)+ coth(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u + v] == Divide[+ Coth[u]*Coth[v]+ 1,Coth[u]+ Coth[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.333014420201075*^14, -2.3525621062227262*^14] | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.333014420201075*^14, -2.3525621062227262*^14] | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E4 4.35.E4] | | | [https://dlmf.nist.gov/4.35.E4 4.35.E4] || <math qid="Q1878">\coth@{u- v} = \frac{-\coth@@{u}\coth@@{v}+1}{\coth@@{u}-\coth@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@{u- v} = \frac{-\coth@@{u}\coth@@{v}+1}{\coth@@{u}-\coth@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u - v) = (- coth(u)*coth(v)+ 1)/(coth(u)- coth(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u - v] == Divide[- Coth[u]*Coth[v]+ 1,Coth[u]- Coth[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E5 4.35.E5] | | | [https://dlmf.nist.gov/4.35.E5 4.35.E5] || <math qid="Q1879">\sinh@@{u}+\sinh@@{v} = 2\sinh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{u}+\sinh@@{v} = 2\sinh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u)+ sinh(v) = 2*sinh((u + v)/(2))*cosh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u]+ Sinh[v] == 2*Sinh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E6 4.35.E6] | | | [https://dlmf.nist.gov/4.35.E6 4.35.E6] || <math qid="Q1880">\sinh@@{u}-\sinh@@{v} = 2\cosh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{u}-\sinh@@{v} = 2\cosh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u)- sinh(v) = 2*cosh((u + v)/(2))*sinh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u]- Sinh[v] == 2*Cosh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E7 4.35.E7] | | | [https://dlmf.nist.gov/4.35.E7 4.35.E7] || <math qid="Q1881">\cosh@@{u}+\cosh@@{v} = 2\cosh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{u}+\cosh@@{v} = 2\cosh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u)+ cosh(v) = 2*cosh((u + v)/(2))*cosh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u]+ Cosh[v] == 2*Cosh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E8 4.35.E8] | | | [https://dlmf.nist.gov/4.35.E8 4.35.E8] || <math qid="Q1882">\cosh@@{u}-\cosh@@{v} = 2\sinh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{u}-\cosh@@{v} = 2\sinh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u)- cosh(v) = 2*sinh((u + v)/(2))*sinh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u]- Cosh[v] == 2*Sinh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E9 4.35.E9] | | | [https://dlmf.nist.gov/4.35.E9 4.35.E9] || <math qid="Q1883">\tanh@@{u}+\tanh@@{v} = \frac{\sinh@{u+ v}}{\cosh@@{u}\cosh@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{u}+\tanh@@{v} = \frac{\sinh@{u+ v}}{\cosh@@{u}\cosh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u)+ tanh(v) = (sinh(u + v))/(cosh(u)*cosh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u]+ Tanh[v] == Divide[Sinh[u + v],Cosh[u]*Cosh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E9 4.35.E9] | | | [https://dlmf.nist.gov/4.35.E9 4.35.E9] || <math qid="Q1883">\tanh@@{u}-\tanh@@{v} = \frac{\sinh@{u- v}}{\cosh@@{u}\cosh@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{u}-\tanh@@{v} = \frac{\sinh@{u- v}}{\cosh@@{u}\cosh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u)- tanh(v) = (sinh(u - v))/(cosh(u)*cosh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u]- Tanh[v] == Divide[Sinh[u - v],Cosh[u]*Cosh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E10 4.35.E10] | | | [https://dlmf.nist.gov/4.35.E10 4.35.E10] || <math qid="Q1884">\coth@@{u}+\coth@@{v} = \frac{\sinh@{v+ u}}{\sinh@@{u}\sinh@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{u}+\coth@@{v} = \frac{\sinh@{v+ u}}{\sinh@@{u}\sinh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u)+ coth(v) = (sinh(v + u))/(sinh(u)*sinh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u]+ Coth[v] == Divide[Sinh[v + u],Sinh[u]*Sinh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E10 4.35.E10] | | | [https://dlmf.nist.gov/4.35.E10 4.35.E10] || <math qid="Q1884">\coth@@{u}-\coth@@{v} = \frac{\sinh@{v- u}}{\sinh@@{u}\sinh@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{u}-\coth@@{v} = \frac{\sinh@{v- u}}{\sinh@@{u}\sinh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u)- coth(v) = (sinh(v - u))/(sinh(u)*sinh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u]- Coth[v] == Divide[Sinh[v - u],Sinh[u]*Sinh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E11 4.35.E11] | | | [https://dlmf.nist.gov/4.35.E11 4.35.E11] || <math qid="Q1885">\cosh^{2}@@{z}-\sinh^{2}@@{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh^{2}@@{z}-\sinh^{2}@@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cosh(z))^(2)- (sinh(z))^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cosh[z])^(2)- (Sinh[z])^(2) == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E12 4.35.E12] | | | [https://dlmf.nist.gov/4.35.E12 4.35.E12] || <math qid="Q1886">\sech^{2}@@{z} = 1-\tanh^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sech^{2}@@{z} = 1-\tanh^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sech(z))^(2) = 1 - (tanh(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sech[z])^(2) == 1 - (Tanh[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E13 4.35.E13] | | | [https://dlmf.nist.gov/4.35.E13 4.35.E13] || <math qid="Q1887">\csch^{2}@@{z} = \coth^{2}@@{z}-1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csch^{2}@@{z} = \coth^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csch(z))^(2) = (coth(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csch[z])^(2) == (Coth[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E14 4.35.E14] | | | [https://dlmf.nist.gov/4.35.E14 4.35.E14] || <math qid="Q1888">2\sinh@@{u}\sinh@@{v} = \cosh@{u+v}-\cosh@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh@@{u}\sinh@@{v} = \cosh@{u+v}-\cosh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sinh(u)*sinh(v) = cosh(u + v)- cosh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sinh[u]*Sinh[v] == Cosh[u + v]- Cosh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E15 4.35.E15] | | | [https://dlmf.nist.gov/4.35.E15 4.35.E15] || <math qid="Q1889">2\cosh@@{u}\cosh@@{v} = \cosh@{u+v}+\cosh@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cosh@@{u}\cosh@@{v} = \cosh@{u+v}+\cosh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*cosh(u)*cosh(v) = cosh(u + v)+ cosh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Cosh[u]*Cosh[v] == Cosh[u + v]+ Cosh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E16 4.35.E16] | | | [https://dlmf.nist.gov/4.35.E16 4.35.E16] || <math qid="Q1890">2\sinh@@{u}\cosh@@{v} = \sinh@{u+v}+\sinh@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh@@{u}\cosh@@{v} = \sinh@{u+v}+\sinh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sinh(u)*cosh(v) = sinh(u + v)+ sinh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sinh[u]*Cosh[v] == Sinh[u + v]+ Sinh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E17 4.35.E17] | | | [https://dlmf.nist.gov/4.35.E17 4.35.E17] || <math qid="Q1891">\sinh^{2}@@{u}-\sinh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh^{2}@@{u}-\sinh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sinh(u))^(2)- (sinh(v))^(2) = sinh(u + v)*sinh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sinh[u])^(2)- (Sinh[v])^(2) == Sinh[u + v]*Sinh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E18 4.35.E18] | | | [https://dlmf.nist.gov/4.35.E18 4.35.E18] || <math qid="Q1892">\cosh^{2}@@{u}-\cosh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh^{2}@@{u}-\cosh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cosh(u))^(2)- (cosh(v))^(2) = sinh(u + v)*sinh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cosh[u])^(2)- (Cosh[v])^(2) == Sinh[u + v]*Sinh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E19 4.35.E19] | | | [https://dlmf.nist.gov/4.35.E19 4.35.E19] || <math qid="Q1893">\sinh^{2}@@{u}+\cosh^{2}@@{v} = \cosh@{u+v}\cosh@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh^{2}@@{u}+\cosh^{2}@@{v} = \cosh@{u+v}\cosh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sinh(u))^(2)+ (cosh(v))^(2) = cosh(u + v)*cosh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sinh[u])^(2)+ (Cosh[v])^(2) == Cosh[u + v]*Cosh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E20 4.35.E20] | | | [https://dlmf.nist.gov/4.35.E20 4.35.E20] || <math qid="Q1894">\sinh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh((z)/(2)) = ((cosh(z)- 1)/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[Divide[z,2]] == (Divide[Cosh[z]- 1,2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4585952894+.8655770340*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655716642-.5419255224*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655716642-.5419255224*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4585952893468803, 0.8655770337160631] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4585952893468803, 0.8655770337160631] | ||
Line 74: | Line 74: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E21 4.35.E21] | | | [https://dlmf.nist.gov/4.35.E21 4.35.E21] || <math qid="Q1895">\cosh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}+1}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}+1}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh((z)/(2)) = ((cosh(z)+ 1)/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[Divide[z,2]] == (Divide[Cosh[z]+ 1,2])^(1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E22 4.35.E22] | | | [https://dlmf.nist.gov/4.35.E22 4.35.E22] || <math qid="Q1896">\tanh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh((z)/(2)) = ((cosh(z)- 1)/(cosh(z)+ 1))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[Divide[z,2]] == (Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5869891489+.8580864930*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8595320616-.4211742148*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8595320616-.4211742148*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5869891488727425, 0.858086492859854] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5869891488727425, 0.858086492859854] | ||
Line 82: | Line 82: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E22 4.35.E22] | | | [https://dlmf.nist.gov/4.35.E22 4.35.E22] || <math qid="Q1896">\left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} = \frac{\cosh@@{z}-1}{\sinh@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} = \frac{\cosh@@{z}-1}{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((cosh(z)- 1)/(cosh(z)+ 1))^(1/2) = (cosh(z)- 1)/(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2) == Divide[Cosh[z]- 1,Sinh[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5869891489-.8580864930*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8595320615+.4211742148*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8595320615+.4211742148*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5869891488727426, -0.8580864928598539] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5869891488727426, -0.8580864928598539] | ||
Line 88: | Line 88: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E22 4.35.E22] | | | [https://dlmf.nist.gov/4.35.E22 4.35.E22] || <math qid="Q1896">\frac{\cosh@@{z}-1}{\sinh@@{z}} = \frac{\sinh@@{z}}{\cosh@@{z}+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cosh@@{z}-1}{\sinh@@{z}} = \frac{\sinh@@{z}}{\cosh@@{z}+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cosh(z)- 1)/(sinh(z)) = (sinh(z))/(cosh(z)+ 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cosh[z]- 1,Sinh[z]] == Divide[Sinh[z],Cosh[z]+ 1]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E23 4.35.E23] | | | [https://dlmf.nist.gov/4.35.E23 4.35.E23] || <math qid="Q1897">\sinh@{-z} = -\sinh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{-z} = -\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(- z) = - sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[- z] == - Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E24 4.35.E24] | | | [https://dlmf.nist.gov/4.35.E24 4.35.E24] || <math qid="Q1898">\cosh@{-z} = \cosh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{-z} = \cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(- z) = cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[- z] == Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E25 4.35.E25] | | | [https://dlmf.nist.gov/4.35.E25 4.35.E25] || <math qid="Q1899">\tanh@{-z} = -\tanh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{-z} = -\tanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(- z) = - tanh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[- z] == - Tanh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E26 4.35.E26] | | | [https://dlmf.nist.gov/4.35.E26 4.35.E26] || <math qid="Q1900">\sinh@{2z} = 2\sinh@@{z}\cosh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{2z} = 2\sinh@@{z}\cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(2*z) = 2*sinh(z)*cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[2*z] == 2*Sinh[z]*Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E26 4.35.E26] | | | [https://dlmf.nist.gov/4.35.E26 4.35.E26] || <math qid="Q1900">2\sinh@@{z}\cosh@@{z} = \frac{2\tanh@@{z}}{1-\tanh^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh@@{z}\cosh@@{z} = \frac{2\tanh@@{z}}{1-\tanh^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sinh(z)*cosh(z) = (2*tanh(z))/(1 - (tanh(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sinh[z]*Cosh[z] == Divide[2*Tanh[z],1 - (Tanh[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E27 4.35.E27] | | | [https://dlmf.nist.gov/4.35.E27 4.35.E27] || <math qid="Q1901">\cosh@{2z} = 2\cosh^{2}@@{z}-1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{2z} = 2\cosh^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(2*z) = 2*(cosh(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[2*z] == 2*(Cosh[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E27 4.35.E27] | | | [https://dlmf.nist.gov/4.35.E27 4.35.E27] || <math qid="Q1901">2\cosh^{2}@@{z}-1 = 2\sinh^{2}@@{z}+1\\</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cosh^{2}@@{z}-1 = 2\sinh^{2}@@{z}+1\\</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(cosh(z))^(2)- 1 = 2*(sinh(z))^(2)+ 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Cosh[z])^(2)- 1 == 2*(Sinh[z])^(2)+ 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E27 4.35.E27] | | | [https://dlmf.nist.gov/4.35.E27 4.35.E27] || <math qid="Q1901">2\sinh^{2}@@{z}+1\\ = \cosh^{2}@@{z}+\sinh^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh^{2}@@{z}+1\\ = \cosh^{2}@@{z}+\sinh^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(sinh(z))^(2)+ 1 = (cosh(z))^(2)+ (sinh(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Sinh[z])^(2)+ 1 == (Cosh[z])^(2)+ (Sinh[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E28 4.35.E28] | | | [https://dlmf.nist.gov/4.35.E28 4.35.E28] || <math qid="Q1902">\tanh@{2z} = \frac{2\tanh@@{z}}{1+\tanh^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{2z} = \frac{2\tanh@@{z}}{1+\tanh^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(2*z) = (2*tanh(z))/(1 + (tanh(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[2*z] == Divide[2*Tanh[z],1 + (Tanh[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E29 4.35.E29] | | | [https://dlmf.nist.gov/4.35.E29 4.35.E29] || <math qid="Q1903">\sinh@{3z} = 3\sinh@@{z}+4\sinh^{3}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{3z} = 3\sinh@@{z}+4\sinh^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(3*z) = 3*sinh(z)+ 4*(sinh(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[3*z] == 3*Sinh[z]+ 4*(Sinh[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E30 4.35.E30] | | | [https://dlmf.nist.gov/4.35.E30 4.35.E30] || <math qid="Q1904">\cosh@{3z} = -3\cosh@@{z}+4\cosh^{3}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{3z} = -3\cosh@@{z}+4\cosh^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(3*z) = - 3*cosh(z)+ 4*(cosh(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[3*z] == - 3*Cosh[z]+ 4*(Cosh[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E31 4.35.E31] | | | [https://dlmf.nist.gov/4.35.E31 4.35.E31] || <math qid="Q1905">\sinh@{4z} = 4\sinh^{3}@@{z}\cosh@@{z}+4\cosh^{3}@@{z}\sinh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{4z} = 4\sinh^{3}@@{z}\cosh@@{z}+4\cosh^{3}@@{z}\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(4*z) = 4*(sinh(z))^(3)* cosh(z)+ 4*(cosh(z))^(3)* sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[4*z] == 4*(Sinh[z])^(3)* Cosh[z]+ 4*(Cosh[z])^(3)* Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E32 4.35.E32] | | | [https://dlmf.nist.gov/4.35.E32 4.35.E32] || <math qid="Q1906">\cosh@{4z} = \cosh^{4}@@{z}+6\sinh^{2}@@{z}\cosh^{2}@@{z}+\sinh^{4}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{4z} = \cosh^{4}@@{z}+6\sinh^{2}@@{z}\cosh^{2}@@{z}+\sinh^{4}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(4*z) = (cosh(z))^(4)+ 6*(sinh(z))^(2)* (cosh(z))^(2)+ (sinh(z))^(4)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[4*z] == (Cosh[z])^(4)+ 6*(Sinh[z])^(2)* (Cosh[z])^(2)+ (Sinh[z])^(4)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E33 4.35.E33] | | | [https://dlmf.nist.gov/4.35.E33 4.35.E33] || <math qid="Q1907">\cosh@{nz}+\sinh@{nz} = (\cosh@@{z}+\sinh@@{z})^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{nz}+\sinh@{nz} = (\cosh@@{z}+\sinh@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(n*z)+ sinh(n*z) = (cosh(z)+ sinh(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[n*z]+ Sinh[n*z] == (Cosh[z]+ Sinh[z])^(n)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E33 4.35.E33] | | | [https://dlmf.nist.gov/4.35.E33 4.35.E33] || <math qid="Q1907">\cosh@{nz}-\sinh@{nz} = (\cosh@@{z}-\sinh@@{z})^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{nz}-\sinh@{nz} = (\cosh@@{z}-\sinh@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(n*z)- sinh(n*z) = (cosh(z)- sinh(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[n*z]- Sinh[n*z] == (Cosh[z]- Sinh[z])^(n)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E34 4.35.E34] | | | [https://dlmf.nist.gov/4.35.E34 4.35.E34] || <math qid="Q1908">\sinh@@{z} = \sinh@@{x}\cos@@{y}+i\cosh@@{x}\sin@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{z} = \sinh@@{x}\cos@@{y}+i\cosh@@{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(x + y*I) = sinh(x)*cos(y)+ I*cosh(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[x + y*I] == Sinh[x]*Cos[y]+ I*Cosh[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E35 4.35.E35] | | | [https://dlmf.nist.gov/4.35.E35 4.35.E35] || <math qid="Q1909">\cosh@@{z} = \cosh@@{x}\cos@@{y}+i\sinh@@{x}\sin@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z} = \cosh@@{x}\cos@@{y}+i\sinh@@{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(x + y*I) = cosh(x)*cos(y)+ I*sinh(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[x + y*I] == Cosh[x]*Cos[y]+ I*Sinh[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E36 4.35.E36] | | | [https://dlmf.nist.gov/4.35.E36 4.35.E36] || <math qid="Q1910">\tanh@@{z} = \frac{\sinh@{2x}+i\sin@{2y}}{\cosh@{2x}+\cos@{2y}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{z} = \frac{\sinh@{2x}+i\sin@{2y}}{\cosh@{2x}+\cos@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(x + y*I) = (sinh(2*x)+ I*sin(2*y))/(cosh(2*x)+ cos(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[x + y*I] == Divide[Sinh[2*x]+ I*Sin[2*y],Cosh[2*x]+ Cos[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E37 4.35.E37] | | | [https://dlmf.nist.gov/4.35.E37 4.35.E37] || <math qid="Q1911">\coth@@{z} = \frac{\sinh@{2x}-i\sin@{2y}}{\cosh@{2x}-\cos@{2y}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{z} = \frac{\sinh@{2x}-i\sin@{2y}}{\cosh@{2x}-\cos@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(x + y*I) = (sinh(2*x)- I*sin(2*y))/(cosh(2*x)- cos(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[x + y*I] == Divide[Sinh[2*x]- I*Sin[2*y],Cosh[2*x]- Cos[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E38 4.35.E38] | | | [https://dlmf.nist.gov/4.35.E38 4.35.E38] || <math qid="Q1912">|\sinh@@{z}| = (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{z}| = (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(x + y*I)) = ((sinh(x))^(2)+ (sin(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[x + y*I]] == ((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E38 4.35.E38] | | | [https://dlmf.nist.gov/4.35.E38 4.35.E38] || <math qid="Q1912">(\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}-\cos@{2y})\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}-\cos@{2y})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sinh(x))^(2)+ (sin(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)- cos(2*y)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]- Cos[2*y]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E39 4.35.E39] | | | [https://dlmf.nist.gov/4.35.E39 4.35.E39] || <math qid="Q1913">|\cosh@@{z}| = (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cosh@@{z}| = (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cosh(x + y*I)) = ((sinh(x))^(2)+ (cos(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cosh[x + y*I]] == ((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E39 4.35.E39] | | | [https://dlmf.nist.gov/4.35.E39 4.35.E39] || <math qid="Q1913">(\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}+\cos@{2y})\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}+\cos@{2y})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sinh(x))^(2)+ (cos(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)+ cos(2*y)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]+ Cos[2*y]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.35.E40 4.35.E40] | | | [https://dlmf.nist.gov/4.35.E40 4.35.E40] || <math qid="Q1914">|\tanh@@{z}| = \left(\frac{\cosh@{2x}-\cos@{2y}}{\cosh@{2x}+\cos@{2y}}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\tanh@@{z}| = \left(\frac{\cosh@{2x}-\cos@{2y}}{\cosh@{2x}+\cos@{2y}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(tanh(x + y*I)) = ((cosh(2*x)- cos(2*y))/(cosh(2*x)+ cos(2*y)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Tanh[x + y*I]] == (Divide[Cosh[2*x]- Cos[2*y],Cosh[2*x]+ Cos[2*y]])^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:09, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.35.E1 | \sinh@{u+ v} = \sinh@@{u}\cosh@@{v}+\cosh@@{u}\sinh@@{v} |
|
sinh(u + v) = sinh(u)*cosh(v)+ cosh(u)*sinh(v)
|
Sinh[u + v] == Sinh[u]*Cosh[v]+ Cosh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E1 | \sinh@{u- v} = \sinh@@{u}\cosh@@{v}-\cosh@@{u}\sinh@@{v} |
|
sinh(u - v) = sinh(u)*cosh(v)- cosh(u)*sinh(v)
|
Sinh[u - v] == Sinh[u]*Cosh[v]- Cosh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E2 | \cosh@{u+ v} = \cosh@@{u}\cosh@@{v}+\sinh@@{u}\sinh@@{v} |
|
cosh(u + v) = cosh(u)*cosh(v)+ sinh(u)*sinh(v)
|
Cosh[u + v] == Cosh[u]*Cosh[v]+ Sinh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E2 | \cosh@{u- v} = \cosh@@{u}\cosh@@{v}-\sinh@@{u}\sinh@@{v} |
|
cosh(u - v) = cosh(u)*cosh(v)- sinh(u)*sinh(v)
|
Cosh[u - v] == Cosh[u]*Cosh[v]- Sinh[u]*Sinh[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E3 | \tanh@{u+ v} = \frac{\tanh@@{u}+\tanh@@{v}}{1+\tanh@@{u}\tanh@@{v}} |
|
tanh(u + v) = (tanh(u)+ tanh(v))/(1 + tanh(u)*tanh(v))
|
Tanh[u + v] == Divide[Tanh[u]+ Tanh[v],1 + Tanh[u]*Tanh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E3 | \tanh@{u- v} = \frac{\tanh@@{u}-\tanh@@{v}}{1-\tanh@@{u}\tanh@@{v}} |
|
tanh(u - v) = (tanh(u)- tanh(v))/(1 - tanh(u)*tanh(v))
|
Tanh[u - v] == Divide[Tanh[u]- Tanh[v],1 - Tanh[u]*Tanh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E4 | \coth@{u+ v} = \frac{+\coth@@{u}\coth@@{v}+1}{\coth@@{u}+\coth@@{v}} |
|
coth(u + v) = (+ coth(u)*coth(v)+ 1)/(coth(u)+ coth(v))
|
Coth[u + v] == Divide[+ Coth[u]*Coth[v]+ 1,Coth[u]+ Coth[v]]
|
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
Result: Complex[4.333014420201075*^14, -2.3525621062227262*^14]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
4.35.E4 | \coth@{u- v} = \frac{-\coth@@{u}\coth@@{v}+1}{\coth@@{u}-\coth@@{v}} |
|
coth(u - v) = (- coth(u)*coth(v)+ 1)/(coth(u)- coth(v))
|
Coth[u - v] == Divide[- Coth[u]*Coth[v]+ 1,Coth[u]- Coth[v]]
|
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.35.E5 | \sinh@@{u}+\sinh@@{v} = 2\sinh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}} |
|
sinh(u)+ sinh(v) = 2*sinh((u + v)/(2))*cosh((u - v)/(2))
|
Sinh[u]+ Sinh[v] == 2*Sinh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E6 | \sinh@@{u}-\sinh@@{v} = 2\cosh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}} |
|
sinh(u)- sinh(v) = 2*cosh((u + v)/(2))*sinh((u - v)/(2))
|
Sinh[u]- Sinh[v] == 2*Cosh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E7 | \cosh@@{u}+\cosh@@{v} = 2\cosh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}} |
|
cosh(u)+ cosh(v) = 2*cosh((u + v)/(2))*cosh((u - v)/(2))
|
Cosh[u]+ Cosh[v] == 2*Cosh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E8 | \cosh@@{u}-\cosh@@{v} = 2\sinh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}} |
|
cosh(u)- cosh(v) = 2*sinh((u + v)/(2))*sinh((u - v)/(2))
|
Cosh[u]- Cosh[v] == 2*Sinh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E9 | \tanh@@{u}+\tanh@@{v} = \frac{\sinh@{u+ v}}{\cosh@@{u}\cosh@@{v}} |
|
tanh(u)+ tanh(v) = (sinh(u + v))/(cosh(u)*cosh(v))
|
Tanh[u]+ Tanh[v] == Divide[Sinh[u + v],Cosh[u]*Cosh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E9 | \tanh@@{u}-\tanh@@{v} = \frac{\sinh@{u- v}}{\cosh@@{u}\cosh@@{v}} |
|
tanh(u)- tanh(v) = (sinh(u - v))/(cosh(u)*cosh(v))
|
Tanh[u]- Tanh[v] == Divide[Sinh[u - v],Cosh[u]*Cosh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E10 | \coth@@{u}+\coth@@{v} = \frac{\sinh@{v+ u}}{\sinh@@{u}\sinh@@{v}} |
|
coth(u)+ coth(v) = (sinh(v + u))/(sinh(u)*sinh(v))
|
Coth[u]+ Coth[v] == Divide[Sinh[v + u],Sinh[u]*Sinh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E10 | \coth@@{u}-\coth@@{v} = \frac{\sinh@{v- u}}{\sinh@@{u}\sinh@@{v}} |
|
coth(u)- coth(v) = (sinh(v - u))/(sinh(u)*sinh(v))
|
Coth[u]- Coth[v] == Divide[Sinh[v - u],Sinh[u]*Sinh[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E11 | \cosh^{2}@@{z}-\sinh^{2}@@{z} = 1 |
|
(cosh(z))^(2)- (sinh(z))^(2) = 1
|
(Cosh[z])^(2)- (Sinh[z])^(2) == 1
|
Successful | Successful | - | Successful [Tested: 7] |
4.35.E12 | \sech^{2}@@{z} = 1-\tanh^{2}@@{z} |
|
(sech(z))^(2) = 1 - (tanh(z))^(2)
|
(Sech[z])^(2) == 1 - (Tanh[z])^(2)
|
Successful | Successful | - | Successful [Tested: 7] |
4.35.E13 | \csch^{2}@@{z} = \coth^{2}@@{z}-1 |
|
(csch(z))^(2) = (coth(z))^(2)- 1
|
(Csch[z])^(2) == (Coth[z])^(2)- 1
|
Successful | Successful | - | Successful [Tested: 7] |
4.35.E14 | 2\sinh@@{u}\sinh@@{v} = \cosh@{u+v}-\cosh@{u-v} |
|
2*sinh(u)*sinh(v) = cosh(u + v)- cosh(u - v)
|
2*Sinh[u]*Sinh[v] == Cosh[u + v]- Cosh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E15 | 2\cosh@@{u}\cosh@@{v} = \cosh@{u+v}+\cosh@{u-v} |
|
2*cosh(u)*cosh(v) = cosh(u + v)+ cosh(u - v)
|
2*Cosh[u]*Cosh[v] == Cosh[u + v]+ Cosh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E16 | 2\sinh@@{u}\cosh@@{v} = \sinh@{u+v}+\sinh@{u-v} |
|
2*sinh(u)*cosh(v) = sinh(u + v)+ sinh(u - v)
|
2*Sinh[u]*Cosh[v] == Sinh[u + v]+ Sinh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E17 | \sinh^{2}@@{u}-\sinh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v} |
|
(sinh(u))^(2)- (sinh(v))^(2) = sinh(u + v)*sinh(u - v)
|
(Sinh[u])^(2)- (Sinh[v])^(2) == Sinh[u + v]*Sinh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E18 | \cosh^{2}@@{u}-\cosh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v} |
|
(cosh(u))^(2)- (cosh(v))^(2) = sinh(u + v)*sinh(u - v)
|
(Cosh[u])^(2)- (Cosh[v])^(2) == Sinh[u + v]*Sinh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E19 | \sinh^{2}@@{u}+\cosh^{2}@@{v} = \cosh@{u+v}\cosh@{u-v} |
|
(sinh(u))^(2)+ (cosh(v))^(2) = cosh(u + v)*cosh(u - v)
|
(Sinh[u])^(2)+ (Cosh[v])^(2) == Cosh[u + v]*Cosh[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.35.E20 | \sinh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{2}\right)^{1/2} |
|
sinh((z)/(2)) = ((cosh(z)- 1)/(2))^(1/2)
|
Sinh[Divide[z,2]] == (Divide[Cosh[z]- 1,2])^(1/2)
|
Failure | Failure | Failed [2 / 7] Result: -.4585952894+.8655770340*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: -.8655716642-.5419255224*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[-0.4585952893468803, 0.8655770337160631]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-0.8655716640572735, -0.5419255224573363]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
4.35.E21 | \cosh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}+1}{2}\right)^{1/2} |
|
cosh((z)/(2)) = ((cosh(z)+ 1)/(2))^(1/2)
|
Cosh[Divide[z,2]] == (Divide[Cosh[z]+ 1,2])^(1/2)
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.35.E22 | \tanh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} |
|
tanh((z)/(2)) = ((cosh(z)- 1)/(cosh(z)+ 1))^(1/2)
|
Tanh[Divide[z,2]] == (Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2)
|
Failure | Failure | Failed [2 / 7] Result: -.5869891489+.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: -.8595320616-.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[-0.5869891488727425, 0.858086492859854]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-0.8595320613685857, -0.42117421488499707]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
4.35.E22 | \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} = \frac{\cosh@@{z}-1}{\sinh@@{z}} |
|
((cosh(z)- 1)/(cosh(z)+ 1))^(1/2) = (cosh(z)- 1)/(sinh(z))
|
(Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2) == Divide[Cosh[z]- 1,Sinh[z]]
|
Failure | Failure | Failed [2 / 7] Result: .5869891489-.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: .8595320615+.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[0.5869891488727426, -0.8580864928598539]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.859532061368586, 0.42117421488499684]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
4.35.E22 | \frac{\cosh@@{z}-1}{\sinh@@{z}} = \frac{\sinh@@{z}}{\cosh@@{z}+1} |
|
(cosh(z)- 1)/(sinh(z)) = (sinh(z))/(cosh(z)+ 1) |
Divide[Cosh[z]- 1,Sinh[z]] == Divide[Sinh[z],Cosh[z]+ 1] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
4.35.E23 | \sinh@{-z} = -\sinh@@{z} |
|
sinh(- z) = - sinh(z) |
Sinh[- z] == - Sinh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E24 | \cosh@{-z} = \cosh@@{z} |
|
cosh(- z) = cosh(z) |
Cosh[- z] == Cosh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E25 | \tanh@{-z} = -\tanh@@{z} |
|
tanh(- z) = - tanh(z) |
Tanh[- z] == - Tanh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E26 | \sinh@{2z} = 2\sinh@@{z}\cosh@@{z} |
|
sinh(2*z) = 2*sinh(z)*cosh(z) |
Sinh[2*z] == 2*Sinh[z]*Cosh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E26 | 2\sinh@@{z}\cosh@@{z} = \frac{2\tanh@@{z}}{1-\tanh^{2}@@{z}} |
|
2*sinh(z)*cosh(z) = (2*tanh(z))/(1 - (tanh(z))^(2)) |
2*Sinh[z]*Cosh[z] == Divide[2*Tanh[z],1 - (Tanh[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E27 | \cosh@{2z} = 2\cosh^{2}@@{z}-1 |
|
cosh(2*z) = 2*(cosh(z))^(2)- 1 |
Cosh[2*z] == 2*(Cosh[z])^(2)- 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E27 | 2\cosh^{2}@@{z}-1 = 2\sinh^{2}@@{z}+1\\ |
|
2*(cosh(z))^(2)- 1 = 2*(sinh(z))^(2)+ 1 |
2*(Cosh[z])^(2)- 1 == 2*(Sinh[z])^(2)+ 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E27 | 2\sinh^{2}@@{z}+1\\ = \cosh^{2}@@{z}+\sinh^{2}@@{z} |
|
2*(sinh(z))^(2)+ 1 = (cosh(z))^(2)+ (sinh(z))^(2) |
2*(Sinh[z])^(2)+ 1 == (Cosh[z])^(2)+ (Sinh[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E28 | \tanh@{2z} = \frac{2\tanh@@{z}}{1+\tanh^{2}@@{z}} |
|
tanh(2*z) = (2*tanh(z))/(1 + (tanh(z))^(2)) |
Tanh[2*z] == Divide[2*Tanh[z],1 + (Tanh[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E29 | \sinh@{3z} = 3\sinh@@{z}+4\sinh^{3}@@{z} |
|
sinh(3*z) = 3*sinh(z)+ 4*(sinh(z))^(3) |
Sinh[3*z] == 3*Sinh[z]+ 4*(Sinh[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E30 | \cosh@{3z} = -3\cosh@@{z}+4\cosh^{3}@@{z} |
|
cosh(3*z) = - 3*cosh(z)+ 4*(cosh(z))^(3) |
Cosh[3*z] == - 3*Cosh[z]+ 4*(Cosh[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E31 | \sinh@{4z} = 4\sinh^{3}@@{z}\cosh@@{z}+4\cosh^{3}@@{z}\sinh@@{z} |
|
sinh(4*z) = 4*(sinh(z))^(3)* cosh(z)+ 4*(cosh(z))^(3)* sinh(z) |
Sinh[4*z] == 4*(Sinh[z])^(3)* Cosh[z]+ 4*(Cosh[z])^(3)* Sinh[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E32 | \cosh@{4z} = \cosh^{4}@@{z}+6\sinh^{2}@@{z}\cosh^{2}@@{z}+\sinh^{4}@@{z} |
|
cosh(4*z) = (cosh(z))^(4)+ 6*(sinh(z))^(2)* (cosh(z))^(2)+ (sinh(z))^(4) |
Cosh[4*z] == (Cosh[z])^(4)+ 6*(Sinh[z])^(2)* (Cosh[z])^(2)+ (Sinh[z])^(4) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E33 | \cosh@{nz}+\sinh@{nz} = (\cosh@@{z}+\sinh@@{z})^{n} |
|
cosh(n*z)+ sinh(n*z) = (cosh(z)+ sinh(z))^(n) |
Cosh[n*z]+ Sinh[n*z] == (Cosh[z]+ Sinh[z])^(n) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E33 | \cosh@{nz}-\sinh@{nz} = (\cosh@@{z}-\sinh@@{z})^{n} |
|
cosh(n*z)- sinh(n*z) = (cosh(z)- sinh(z))^(n) |
Cosh[n*z]- Sinh[n*z] == (Cosh[z]- Sinh[z])^(n) |
Successful | Successful | - | Successful [Tested: 7] |
4.35.E34 | \sinh@@{z} = \sinh@@{x}\cos@@{y}+i\cosh@@{x}\sin@@{y} |
|
sinh(x + y*I) = sinh(x)*cos(y)+ I*cosh(x)*sin(y) |
Sinh[x + y*I] == Sinh[x]*Cos[y]+ I*Cosh[x]*Sin[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E35 | \cosh@@{z} = \cosh@@{x}\cos@@{y}+i\sinh@@{x}\sin@@{y} |
|
cosh(x + y*I) = cosh(x)*cos(y)+ I*sinh(x)*sin(y) |
Cosh[x + y*I] == Cosh[x]*Cos[y]+ I*Sinh[x]*Sin[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E36 | \tanh@@{z} = \frac{\sinh@{2x}+i\sin@{2y}}{\cosh@{2x}+\cos@{2y}} |
|
tanh(x + y*I) = (sinh(2*x)+ I*sin(2*y))/(cosh(2*x)+ cos(2*y)) |
Tanh[x + y*I] == Divide[Sinh[2*x]+ I*Sin[2*y],Cosh[2*x]+ Cos[2*y]] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E37 | \coth@@{z} = \frac{\sinh@{2x}-i\sin@{2y}}{\cosh@{2x}-\cos@{2y}} |
|
coth(x + y*I) = (sinh(2*x)- I*sin(2*y))/(cosh(2*x)- cos(2*y)) |
Coth[x + y*I] == Divide[Sinh[2*x]- I*Sin[2*y],Cosh[2*x]- Cos[2*y]] |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E38 | |\sinh@@{z}| = (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} |
|
abs(sinh(x + y*I)) = ((sinh(x))^(2)+ (sin(y))^(2))^(1/2) |
Abs[Sinh[x + y*I]] == ((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.35.E38 | (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}-\cos@{2y})\right)^{1/2} |
|
((sinh(x))^(2)+ (sin(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)- cos(2*y)))^(1/2) |
((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]- Cos[2*y]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E39 | |\cosh@@{z}| = (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} |
|
abs(cosh(x + y*I)) = ((sinh(x))^(2)+ (cos(y))^(2))^(1/2) |
Abs[Cosh[x + y*I]] == ((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.35.E39 | (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}+\cos@{2y})\right)^{1/2} |
|
((sinh(x))^(2)+ (cos(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)+ cos(2*y)))^(1/2) |
((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]+ Cos[2*y]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.35.E40 | |\tanh@@{z}| = \left(\frac{\cosh@{2x}-\cos@{2y}}{\cosh@{2x}+\cos@{2y}}\right)^{1/2} |
|
abs(tanh(x + y*I)) = ((cosh(2*x)- cos(2*y))/(cosh(2*x)+ cos(2*y)))^(1/2) |
Abs[Tanh[x + y*I]] == (Divide[Cosh[2*x]- Cos[2*y],Cosh[2*x]+ Cos[2*y]])^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |