4.31: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
|  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica | ||
| Line 14: | Line 14: | ||
| ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
| |-   | |-   | ||
| | [https://dlmf.nist.gov/4.31.E1 4.31.E1] | | | [https://dlmf.nist.gov/4.31.E1 4.31.E1] || <math qid="Q1851">\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sinh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
| |-   | |-   | ||
| | [https://dlmf.nist.gov/4.31.E2 4.31.E2] | | | [https://dlmf.nist.gov/4.31.E2 4.31.E2] || <math qid="Q1852">\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tanh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
| |-   | |-   | ||
| | [https://dlmf.nist.gov/4.31.E3 4.31.E3] | | | [https://dlmf.nist.gov/4.31.E3 4.31.E3] || <math qid="Q1853">\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
| |} | |} | ||
| </div> | </div> | ||
Latest revision as of 11:09, 28 June 2021
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 4.31.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1} \lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | limit((sinh(z))/(z), z = 0) = 1
 | Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1
 | Successful | Successful | - | Successful [Tested: 1] | 
| 4.31.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1} \lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | limit((tanh(z))/(z), z = 0) = 1
 | Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1
 | Successful | Successful | - | Successful [Tested: 1] | 
| 4.31.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}} \lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)
 | Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
 | Successful | Successful | - | Successful [Tested: 1] |