4.28: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.28.E1 4.28.E1] || [[Item:Q1838|<math>\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(z) = (exp(z)- exp(- z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[z] == Divide[Exp[z]- Exp[- z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E1 4.28.E1] || <math qid="Q1838">\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(z) = (exp(z)- exp(- z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[z] == Divide[Exp[z]- Exp[- z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E2 4.28.E2] || [[Item:Q1839|<math>\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z) = (exp(z)+ exp(- z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z] == Divide[Exp[z]+ Exp[- z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E2 4.28.E2] || <math qid="Q1839">\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z) = (exp(z)+ exp(- z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z] == Divide[Exp[z]+ Exp[- z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E3 4.28.E3] || [[Item:Q1840|<math>\cosh@@{z}+\sinh@@{z} = e^{+ z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z}+\sinh@@{z} = e^{+ z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z)+ sinh(z) = exp(+ z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z]+ Sinh[z] == Exp[+ z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E3 4.28.E3] || <math qid="Q1840">\cosh@@{z}+\sinh@@{z} = e^{+ z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z}+\sinh@@{z} = e^{+ z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z)+ sinh(z) = exp(+ z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z]+ Sinh[z] == Exp[+ z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E3 4.28.E3] || [[Item:Q1840|<math>\cosh@@{z}-\sinh@@{z} = e^{- z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z}-\sinh@@{z} = e^{- z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z)- sinh(z) = exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z]- Sinh[z] == Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E3 4.28.E3] || <math qid="Q1840">\cosh@@{z}-\sinh@@{z} = e^{- z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z}-\sinh@@{z} = e^{- z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z)- sinh(z) = exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z]- Sinh[z] == Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E4 4.28.E4] || [[Item:Q1841|<math>\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(z) = (sinh(z))/(cosh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[z] == Divide[Sinh[z],Cosh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E4 4.28.E4] || <math qid="Q1841">\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(z) = (sinh(z))/(cosh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[z] == Divide[Sinh[z],Cosh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E5 4.28.E5] || [[Item:Q1842|<math>\csch@@{z} = \frac{1}{\sinh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csch@@{z} = \frac{1}{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csch(z) = (1)/(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csch[z] == Divide[1,Sinh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E5 4.28.E5] || <math qid="Q1842">\csch@@{z} = \frac{1}{\sinh@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csch@@{z} = \frac{1}{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csch(z) = (1)/(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csch[z] == Divide[1,Sinh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E6 4.28.E6] || [[Item:Q1843|<math>\sech@@{z} = \frac{1}{\cosh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sech@@{z} = \frac{1}{\cosh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sech(z) = (1)/(cosh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[z] == Divide[1,Cosh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E6 4.28.E6] || <math qid="Q1843">\sech@@{z} = \frac{1}{\cosh@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sech@@{z} = \frac{1}{\cosh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sech(z) = (1)/(cosh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[z] == Divide[1,Cosh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E7 4.28.E7] || [[Item:Q1844|<math>\coth@@{z} = \frac{1}{\tanh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{z} = \frac{1}{\tanh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(z) = (1)/(tanh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[z] == Divide[1,Tanh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E7 4.28.E7] || <math qid="Q1844">\coth@@{z} = \frac{1}{\tanh@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{z} = \frac{1}{\tanh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(z) = (1)/(tanh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[z] == Divide[1,Tanh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E8 4.28.E8] || [[Item:Q1845|<math>\sin@{iz} = i\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{iz} = i\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(I*z) = I*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[I*z] == I*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E8 4.28.E8] || <math qid="Q1845">\sin@{iz} = i\sinh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{iz} = i\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(I*z) = I*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[I*z] == I*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E9 4.28.E9] || [[Item:Q1846|<math>\cos@{iz} = \cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{iz} = \cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(I*z) = cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[I*z] == Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E9 4.28.E9] || <math qid="Q1846">\cos@{iz} = \cosh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{iz} = \cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(I*z) = cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[I*z] == Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E10 4.28.E10] || [[Item:Q1847|<math>\tan@{iz} = i\tanh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{iz} = i\tanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(I*z) = I*tanh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[I*z] == I*Tanh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E10 4.28.E10] || <math qid="Q1847">\tan@{iz} = i\tanh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{iz} = i\tanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(I*z) = I*tanh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[I*z] == I*Tanh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E11 4.28.E11] || [[Item:Q1848|<math>\csc@{iz} = -i\csch@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@{iz} = -i\csch@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(I*z) = - I*csch(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[I*z] == - I*Csch[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E11 4.28.E11] || <math qid="Q1848">\csc@{iz} = -i\csch@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@{iz} = -i\csch@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(I*z) = - I*csch(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[I*z] == - I*Csch[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E12 4.28.E12] || [[Item:Q1849|<math>\sec@{iz} = \sech@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@{iz} = \sech@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(I*z) = sech(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[I*z] == Sech[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E12 4.28.E12] || <math qid="Q1849">\sec@{iz} = \sech@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@{iz} = \sech@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(I*z) = sech(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[I*z] == Sech[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.28.E13 4.28.E13] || [[Item:Q1850|<math>\cot@{iz} = -i\coth@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{iz} = -i\coth@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(I*z) = - I*coth(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[I*z] == - I*Coth[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.28.E13 4.28.E13] || <math qid="Q1850">\cot@{iz} = -i\coth@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{iz} = -i\coth@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(I*z) = - I*coth(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[I*z] == - I*Coth[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|}
|}
</div>
</div>

Latest revision as of 11:08, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.28.E1 sinh z = e z - e - z 2 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 2 {\displaystyle{\displaystyle\sinh z=\frac{e^{z}-e^{-z}}{2}}}
\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}

sinh(z) = (exp(z)- exp(- z))/(2)
Sinh[z] == Divide[Exp[z]- Exp[- z],2]
Successful Successful - Successful [Tested: 7]
4.28.E2 cosh z = e z + e - z 2 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 2 {\displaystyle{\displaystyle\cosh z=\frac{e^{z}+e^{-z}}{2}}}
\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}

cosh(z) = (exp(z)+ exp(- z))/(2)
Cosh[z] == Divide[Exp[z]+ Exp[- z],2]
Successful Successful - Successful [Tested: 7]
4.28.E3 cosh z + sinh z = e + z 𝑧 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\cosh z+\sinh z=e^{+z}}}
\cosh@@{z}+\sinh@@{z} = e^{+ z}

cosh(z)+ sinh(z) = exp(+ z)
Cosh[z]+ Sinh[z] == Exp[+ z]
Successful Successful - Successful [Tested: 7]
4.28.E3 cosh z - sinh z = e - z 𝑧 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\cosh z-\sinh z=e^{-z}}}
\cosh@@{z}-\sinh@@{z} = e^{- z}

cosh(z)- sinh(z) = exp(- z)
Cosh[z]- Sinh[z] == Exp[- z]
Successful Successful - Successful [Tested: 7]
4.28.E4 tanh z = sinh z cosh z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\tanh z=\frac{\sinh z}{\cosh z}}}
\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}

tanh(z) = (sinh(z))/(cosh(z))
Tanh[z] == Divide[Sinh[z],Cosh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E5 csch z = 1 sinh z 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{csch}z=\frac{1}{\sinh z}}}
\csch@@{z} = \frac{1}{\sinh@@{z}}

csch(z) = (1)/(sinh(z))
Csch[z] == Divide[1,Sinh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E6 sech z = 1 cosh z 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{sech}z=\frac{1}{\cosh z}}}
\sech@@{z} = \frac{1}{\cosh@@{z}}

sech(z) = (1)/(cosh(z))
Sech[z] == Divide[1,Cosh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E7 coth z = 1 tanh z hyperbolic-cotangent 𝑧 1 𝑧 {\displaystyle{\displaystyle\coth z=\frac{1}{\tanh z}}}
\coth@@{z} = \frac{1}{\tanh@@{z}}

coth(z) = (1)/(tanh(z))
Coth[z] == Divide[1,Tanh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E8 sin ( i z ) = i sinh z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\sin\left(iz\right)=i\sinh z}}
\sin@{iz} = i\sinh@@{z}

sin(I*z) = I*sinh(z)
Sin[I*z] == I*Sinh[z]
Successful Successful - Successful [Tested: 7]
4.28.E9 cos ( i z ) = cosh z 𝑖 𝑧 𝑧 {\displaystyle{\displaystyle\cos\left(iz\right)=\cosh z}}
\cos@{iz} = \cosh@@{z}

cos(I*z) = cosh(z)
Cos[I*z] == Cosh[z]
Successful Successful - Successful [Tested: 7]
4.28.E10 tan ( i z ) = i tanh z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\tan\left(iz\right)=i\tanh z}}
\tan@{iz} = i\tanh@@{z}

tan(I*z) = I*tanh(z)
Tan[I*z] == I*Tanh[z]
Successful Successful - Successful [Tested: 7]
4.28.E11 csc ( i z ) = - i csch z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\csc\left(iz\right)=-i\operatorname{csch}z}}
\csc@{iz} = -i\csch@@{z}

csc(I*z) = - I*csch(z)
Csc[I*z] == - I*Csch[z]
Successful Successful - Successful [Tested: 7]
4.28.E12 sec ( i z ) = sech z 𝑖 𝑧 𝑧 {\displaystyle{\displaystyle\sec\left(iz\right)=\operatorname{sech}z}}
\sec@{iz} = \sech@@{z}

sec(I*z) = sech(z)
Sec[I*z] == Sech[z]
Successful Successful - Successful [Tested: 7]
4.28.E13 cot ( i z ) = - i coth z 𝑖 𝑧 𝑖 hyperbolic-cotangent 𝑧 {\displaystyle{\displaystyle\cot\left(iz\right)=-i\coth z}}
\cot@{iz} = -i\coth@@{z}

cot(I*z) = - I*coth(z)
Cot[I*z] == - I*Coth[z]
Successful Successful - Successful [Tested: 7]