4.21: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || [[Item:Q1704|<math>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || <math qid="Q1704">\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || [[Item:Q1704|<math>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || <math qid="Q1704">\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || [[Item:Q1705|<math>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || <math qid="Q1705">\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || [[Item:Q1705|<math>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || <math qid="Q1705">\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || [[Item:Q1706|<math>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || <math qid="Q1706">\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || [[Item:Q1706|<math>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || <math qid="Q1706">\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || [[Item:Q1707|<math>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || <math qid="Q1707">\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || [[Item:Q1707|<math>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || <math qid="Q1707">\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E6 4.21.E6] || [[Item:Q1708|<math>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E6 4.21.E6] || <math qid="Q1708">\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E7 4.21.E7] || [[Item:Q1709|<math>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E7 4.21.E7] || <math qid="Q1709">\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E8 4.21.E8] || [[Item:Q1710|<math>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E8 4.21.E8] || <math qid="Q1710">\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E9 4.21.E9] || [[Item:Q1711|<math>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E9 4.21.E9] || <math qid="Q1711">\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || [[Item:Q1712|<math>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || <math qid="Q1712">\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || [[Item:Q1712|<math>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || <math qid="Q1712">\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || [[Item:Q1713|<math>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || <math qid="Q1713">\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || [[Item:Q1713|<math>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || <math qid="Q1713">\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E12 4.21.E12] || [[Item:Q1714|<math>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(z))^(2)+ (cos(z))^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[z])^(2)+ (Cos[z])^(2) == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E12 4.21.E12] || <math qid="Q1714">\sin^{2}@@{z}+\cos^{2}@@{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(z))^(2)+ (cos(z))^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[z])^(2)+ (Cos[z])^(2) == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E13 4.21.E13] || [[Item:Q1715|<math>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sec(z))^(2) = 1 + (tan(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sec[z])^(2) == 1 + (Tan[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E13 4.21.E13] || <math qid="Q1715">\sec^{2}@@{z} = 1+\tan^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sec(z))^(2) = 1 + (tan(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sec[z])^(2) == 1 + (Tan[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E14 4.21.E14] || [[Item:Q1716|<math>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csc(z))^(2) = 1 + (cot(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csc[z])^(2) == 1 + (Cot[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E14 4.21.E14] || <math qid="Q1716">\csc^{2}@@{z} = 1+\cot^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csc(z))^(2) = 1 + (cot(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csc[z])^(2) == 1 + (Cot[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E15 4.21.E15] || [[Item:Q1717|<math>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*sin(v) = cos(u - v)- cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E15 4.21.E15] || <math qid="Q1717">2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*sin(v) = cos(u - v)- cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E16 4.21.E16] || [[Item:Q1718|<math>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E16 4.21.E16] || <math qid="Q1718">2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E17 4.21.E17] || [[Item:Q1719|<math>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E17 4.21.E17] || <math qid="Q1719">2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E18 4.21.E18] || [[Item:Q1720|<math>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E18 4.21.E18] || <math qid="Q1720">\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E19 4.21.E19] || [[Item:Q1721|<math>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E19 4.21.E19] || <math qid="Q1721">\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E20 4.21.E20] || [[Item:Q1722|<math>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/4.21.E20 4.21.E20] || <math qid="Q1722">\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || [[Item:Q1723|<math>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5419255224+.8655716642*I
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || <math qid="Q1723">\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5419255224+.8655716642*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.541925522457336, 0.8655716640572733]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.541925522457336, 0.8655716640572733]
Line 82: Line 82:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || [[Item:Q1723|<math>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8655770340+.4585952894*I
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || <math qid="Q1723">\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8655770340+.4585952894*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5419255224-.8655716642*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5419255224-.8655716642*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.363277520
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.363277520
Line 90: Line 90:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || [[Item:Q1724|<math>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || <math qid="Q1724">\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || [[Item:Q1724|<math>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.872439139-.2119959694*I
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || <math qid="Q1724">\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.872439139-.2119959694*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I
Line 100: Line 100:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320616*I
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320616*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849969, 0.8595320613685856]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849969, 0.8595320613685856]
Line 106: Line 106:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320616*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320616*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.863192920
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.863192920
Line 114: Line 114:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320615*I
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320615*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.42117421488499684, -0.8595320613685857]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.42117421488499684, -0.8595320613685857]
Line 120: Line 120:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.863192920
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.863192920
Line 128: Line 128:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E24 4.21.E24] || [[Item:Q1726|<math>\sin@{-z} = -\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{-z} = -\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(- z) = - sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[- z] == - Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E24 4.21.E24] || <math qid="Q1726">\sin@{-z} = -\sin@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{-z} = -\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(- z) = - sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[- z] == - Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E25 4.21.E25] || [[Item:Q1727|<math>\cos@{-z} = \cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{-z} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(- z) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[- z] == Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E25 4.21.E25] || <math qid="Q1727">\cos@{-z} = \cos@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{-z} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(- z) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[- z] == Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E26 4.21.E26] || [[Item:Q1728|<math>\tan@{-z} = -\tan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{-z} = -\tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(- z) = - tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[- z] == - Tan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E26 4.21.E26] || <math qid="Q1728">\tan@{-z} = -\tan@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{-z} = -\tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(- z) = - tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[- z] == - Tan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || [[Item:Q1729|<math>\sin@{2z} = 2\sin@@{z}\cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{2z} = 2\sin@@{z}\cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(2*z) = 2*sin(z)*cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[2*z] == 2*Sin[z]*Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || <math qid="Q1729">\sin@{2z} = 2\sin@@{z}\cos@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{2z} = 2\sin@@{z}\cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(2*z) = 2*sin(z)*cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[2*z] == 2*Sin[z]*Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || [[Item:Q1729|<math>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || <math qid="Q1729">2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>\cos@{2z} = 2\cos^{2}@@{z}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{2z} = 2\cos^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(2*z) = 2*(cos(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*z] == 2*(Cos[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">\cos@{2z} = 2\cos^{2}@@{z}-1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{2z} = 2\cos^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(2*z) = 2*(cos(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*z] == 2*(Cos[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || <math qid="Q1731">\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || <math qid="Q1731">\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || <math qid="Q1731">\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E30 4.21.E30] || [[Item:Q1732|<math>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E30 4.21.E30] || <math qid="Q1732">\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E31 4.21.E31] || [[Item:Q1733|<math>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E31 4.21.E31] || <math qid="Q1733">\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E32 4.21.E32] || [[Item:Q1734|<math>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E32 4.21.E32] || <math qid="Q1734">\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E33 4.21.E33] || [[Item:Q1735|<math>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E33 4.21.E33] || <math qid="Q1735">\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E34 4.21.E34] || [[Item:Q1736|<math>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/4.21.E34 4.21.E34] || <math qid="Q1736">\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E35 4.21.E35] || [[Item:Q1737|<math>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.21.E35 4.21.E35] || <math qid="Q1737">\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.21#Ex1 4.21#Ex1] || [[Item:Q1738|<math>\sin@@{z} = \frac{2t}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{2t}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (2*t)/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[2*t,1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.782057258+.3375964631*I
| [https://dlmf.nist.gov/4.21#Ex1 4.21#Ex1] || <math qid="Q1738">\sin@@{z} = \frac{2t}{1+t^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{2t}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (2*t)/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[2*t,1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.782057258+.3375964631*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.593808282-.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.593808282-.8586367171*I
Line 174: Line 174:
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21#Ex2 4.21#Ex2] || [[Item:Q1739|<math>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (1 - (t)^(2))/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.115158404-.3969495503*I
| [https://dlmf.nist.gov/4.21#Ex2 4.21#Ex2] || <math qid="Q1739">\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (1 - (t)^(2))/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I
Line 182: Line 182:
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.21.E37 4.21.E37] || [[Item:Q1741|<math>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E37 4.21.E37] || <math qid="Q1741">\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E38 4.21.E38] || [[Item:Q1742|<math>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E38 4.21.E38] || <math qid="Q1742">\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E39 4.21.E39] || [[Item:Q1743|<math>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E39 4.21.E39] || <math qid="Q1743">\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E40 4.21.E40] || [[Item:Q1744|<math>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E40 4.21.E40] || <math qid="Q1744">\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || [[Item:Q1745|<math>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || <math qid="Q1745">|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || [[Item:Q1745|<math>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || <math qid="Q1745">(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || [[Item:Q1746|<math>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || <math qid="Q1746">|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || [[Item:Q1746|<math>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || <math qid="Q1746">(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.21.E43 4.21.E43] || [[Item:Q1747|<math>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.21.E43 4.21.E43] || <math qid="Q1747">|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|}
|}
</div>
</div>

Latest revision as of 11:06, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.21.E1 sin u + cos u = 2 sin ( u + 1 4 π ) 𝑢 𝑢 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sin u+\cos u=\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi% \right)}}
\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}

sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)
Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 sin u - cos u = 2 sin ( u - 1 4 π ) 𝑢 𝑢 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sin u-\cos u=\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi% \right)}}
\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}

sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)
Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 2 sin ( u + 1 4 π ) = + 2 cos ( u - 1 4 π ) 2 𝑢 1 4 𝜋 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi\right)=+\sqrt{% 2}\cos\left(u-\tfrac{1}{4}\pi\right)}}
\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}

sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)
Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 2 sin ( u - 1 4 π ) = - 2 cos ( u + 1 4 π ) 2 𝑢 1 4 𝜋 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi\right)=-\sqrt{% 2}\cos\left(u+\tfrac{1}{4}\pi\right)}}
\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}

sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)
Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E2 sin ( u + v ) = sin u cos v + cos u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\sin\left(u+v\right)=\sin u\cos v+\cos u\sin v}}
\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}

sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)
Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E2 sin ( u - v ) = sin u cos v - cos u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\sin\left(u-v\right)=\sin u\cos v-\cos u\sin v}}
\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}

sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)
Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E3 cos ( u + v ) = cos u cos v - sin u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\cos\left(u+v\right)=\cos u\cos v-\sin u\sin v}}
\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}

cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)
Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E3 cos ( u - v ) = cos u cos v + sin u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\cos\left(u-v\right)=\cos u\cos v+\sin u\sin v}}
\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}

cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)
Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E4 tan ( u + v ) = tan u + tan v 1 - tan u tan v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\tan\left(u+v\right)=\frac{\tan u+\tan v}{1-\tan u% \tan v}}}
\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}

tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))
Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]
Successful Successful - Successful [Tested: 100]
4.21.E4 tan ( u - v ) = tan u - tan v 1 + tan u tan v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\tan\left(u-v\right)=\frac{\tan u-\tan v}{1+\tan u% \tan v}}}
\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}

tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))
Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]
Successful Successful - Successful [Tested: 100]
4.21.E5 cot ( u + v ) = + cot u cot v - 1 cot u + cot v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\cot\left(u+v\right)=\frac{+\cot u\cot v-1}{\cot u% +\cot v}}}
\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}

cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))
Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E5 cot ( u - v ) = - cot u cot v - 1 cot u - cot v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\cot\left(u-v\right)=\frac{-\cot u\cot v-1}{\cot u% -\cot v}}}
\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}

cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))
Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E6 sin u + sin v = 2 sin ( u + v 2 ) cos ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\sin u+\sin v=2\sin\left(\frac{u+v}{2}\right)\cos% \left(\frac{u-v}{2}\right)}}
\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}

sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))
Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E7 sin u - sin v = 2 cos ( u + v 2 ) sin ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\sin u-\sin v=2\cos\left(\frac{u+v}{2}\right)\sin% \left(\frac{u-v}{2}\right)}}
\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}

sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))
Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E8 cos u + cos v = 2 cos ( u + v 2 ) cos ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\cos u+\cos v=2\cos\left(\frac{u+v}{2}\right)\cos% \left(\frac{u-v}{2}\right)}}
\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}

cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))
Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E9 cos u - cos v = - 2 sin ( u + v 2 ) sin ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\cos u-\cos v=-2\sin\left(\frac{u+v}{2}\right)\sin% \left(\frac{u-v}{2}\right)}}
\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}

cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))
Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E10 tan u + tan v = sin ( u + v ) cos u cos v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\tan u+\tan v=\frac{\sin\left(u+v\right)}{\cos u% \cos v}}}
\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}

tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))
Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]
Successful Successful - Successful [Tested: 100]
4.21.E10 tan u - tan v = sin ( u - v ) cos u cos v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\tan u-\tan v=\frac{\sin\left(u-v\right)}{\cos u% \cos v}}}
\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}

tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))
Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]
Successful Successful - Successful [Tested: 100]
4.21.E11 cot u + cot v = sin ( v + u ) sin u sin v 𝑢 𝑣 𝑣 𝑢 𝑢 𝑣 {\displaystyle{\displaystyle\cot u+\cot v=\frac{\sin\left(v+u\right)}{\sin u% \sin v}}}
\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}

cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))
Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]
Successful Successful - Successful [Tested: 100]
4.21.E11 cot u - cot v = sin ( v - u ) sin u sin v 𝑢 𝑣 𝑣 𝑢 𝑢 𝑣 {\displaystyle{\displaystyle\cot u-\cot v=\frac{\sin\left(v-u\right)}{\sin u% \sin v}}}
\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}

cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))
Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]
Successful Successful - Successful [Tested: 100]
4.21.E12 sin 2 z + cos 2 z = 1 2 𝑧 2 𝑧 1 {\displaystyle{\displaystyle{\sin^{2}}z+{\cos^{2}}z=1}}
\sin^{2}@@{z}+\cos^{2}@@{z} = 1

(sin(z))^(2)+ (cos(z))^(2) = 1
(Sin[z])^(2)+ (Cos[z])^(2) == 1
Successful Successful - Successful [Tested: 7]
4.21.E13 sec 2 z = 1 + tan 2 z 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\sec^{2}}z=1+{\tan^{2}}z}}
\sec^{2}@@{z} = 1+\tan^{2}@@{z}

(sec(z))^(2) = 1 + (tan(z))^(2)
(Sec[z])^(2) == 1 + (Tan[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E14 csc 2 z = 1 + cot 2 z 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\csc^{2}}z=1+{\cot^{2}}z}}
\csc^{2}@@{z} = 1+\cot^{2}@@{z}

(csc(z))^(2) = 1 + (cot(z))^(2)
(Csc[z])^(2) == 1 + (Cot[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E15 2 sin u sin v = cos ( u - v ) - cos ( u + v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\sin u\sin v=\cos\left(u-v\right)-\cos\left(u+v% \right)}}
2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}

2*sin(u)*sin(v) = cos(u - v)- cos(u + v)
2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E16 2 cos u cos v = cos ( u - v ) + cos ( u + v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\cos u\cos v=\cos\left(u-v\right)+\cos\left(u+v% \right)}}
2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}

2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)
2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E17 2 sin u cos v = sin ( u - v ) + sin ( u + v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\sin u\cos v=\sin\left(u-v\right)+\sin\left(u+v% \right)}}
2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}

2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)
2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E18 sin 2 u - sin 2 v = sin ( u + v ) sin ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\sin^{2}}u-{\sin^{2}}v=\sin\left(u+v\right)\sin% \left(u-v\right)}}
\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}

(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)
(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E19 cos 2 u - cos 2 v = - sin ( u + v ) sin ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\cos^{2}}u-{\cos^{2}}v=-\sin\left(u+v\right)\sin% \left(u-v\right)}}
\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}

(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)
(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E20 cos 2 u - sin 2 v = cos ( u + v ) cos ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\cos^{2}}u-{\sin^{2}}v=\cos\left(u+v\right)\cos% \left(u-v\right)}}
\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}

(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)
(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E21 sin z 2 = + ( 1 - cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\sin\frac{z}{2}=+\left(\frac{1-\cos z}{2}\right)^{% 1/2}}}
\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}

sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)
Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.5419255224+.8655716642*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.541925522457336, 0.8655716640572733]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8655770337160631, -0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E21 sin z 2 = - ( 1 - cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\sin\frac{z}{2}=-\left(\frac{1-\cos z}{2}\right)^{% 1/2}}}
\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}

sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)
Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)
Failure Failure
Failed [5 / 7]
Result: .8655770340+.4585952894*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .5419255224-.8655716642*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.363277520
Test Values: {z = 1.5}

Result: .4948079184
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.8655770337160631, 0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5419255224573365, -0.8655716640572731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E22 cos z 2 = + ( 1 + cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\cos\frac{z}{2}=+\left(\frac{1+\cos z}{2}\right)^{% 1/2}}}
\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}

cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)
Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.21.E22 cos z 2 = - ( 1 + cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\cos\frac{z}{2}=-\left(\frac{1+\cos z}{2}\right)^{% 1/2}}}
\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}

cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)
Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)
Failure Failure
Failed [7 / 7]
Result: 1.872439139-.2119959694*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: 2.122352334+.2210167318*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.872439139-.2119959694*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[1.872439138961815, -0.2119959693051084]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.1223523339444896, 0.22101673165487346]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 tan z 2 = + ( 1 - cos z 1 + cos z ) 1 / 2 𝑧 2 superscript 1 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle\tan\frac{z}{2}=+\left(\frac{1-\cos z}{1+\cos z}% \right)^{1/2}}}
\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}

tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)
Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.4211742148+.8595320616*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.4211742148849969, 0.8595320613685856]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.858086492859854, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E23 tan z 2 = - ( 1 - cos z 1 + cos z ) 1 / 2 𝑧 2 superscript 1 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle\tan\frac{z}{2}=-\left(\frac{1-\cos z}{1+\cos z}% \right)^{1/2}}}
\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}

tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)
Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)
Failure Failure
Failed [5 / 7]
Result: .8580864930+.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .4211742148-.8595320616*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.863192920
Test Values: {z = 1.5}

Result: .5106838424
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.858086492859854, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4211742148849973, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 + ( 1 - cos z 1 + cos z ) 1 / 2 = 1 - cos z sin z superscript 1 𝑧 1 𝑧 1 2 1 𝑧 𝑧 {\displaystyle{\displaystyle+\left(\frac{1-\cos z}{1+\cos z}\right)^{1/2}=% \frac{1-\cos z}{\sin z}}}
+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}

+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))
+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]
Failure Failure
Failed [2 / 7]
Result: .4211742148-.8595320615*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .8580864930+.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[0.42117421488499684, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.8580864928598539, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E23 - ( 1 - cos z 1 + cos z ) 1 / 2 = 1 - cos z sin z superscript 1 𝑧 1 𝑧 1 2 1 𝑧 𝑧 {\displaystyle{\displaystyle-\left(\frac{1-\cos z}{1+\cos z}\right)^{1/2}=% \frac{1-\cos z}{\sin z}}}
-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}

-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))
-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]
Failure Failure
Failed [5 / 7]
Result: -.8580864930-.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: -1.863192920
Test Values: {z = 1.5}

Result: -.5106838424
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[-0.8580864928598539, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.4211742148849972, 0.8595320613685855]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 1 - cos z sin z = sin z 1 + cos z 1 𝑧 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{1-\cos z}{\sin z}=\frac{\sin z}{1+\cos z}}}
\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}

(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))
Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
4.21.E24 sin ( - z ) = - sin z 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(-z\right)=-\sin z}}
\sin@{-z} = -\sin@@{z}

sin(- z) = - sin(z)
Sin[- z] == - Sin[z]
Successful Successful - Successful [Tested: 7]
4.21.E25 cos ( - z ) = cos z 𝑧 𝑧 {\displaystyle{\displaystyle\cos\left(-z\right)=\cos z}}
\cos@{-z} = \cos@@{z}

cos(- z) = cos(z)
Cos[- z] == Cos[z]
Successful Successful - Successful [Tested: 7]
4.21.E26 tan ( - z ) = - tan z 𝑧 𝑧 {\displaystyle{\displaystyle\tan\left(-z\right)=-\tan z}}
\tan@{-z} = -\tan@@{z}

tan(- z) = - tan(z)
Tan[- z] == - Tan[z]
Successful Successful - Successful [Tested: 7]
4.21.E27 sin ( 2 z ) = 2 sin z cos z 2 𝑧 2 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(2z\right)=2\sin z\cos z}}
\sin@{2z} = 2\sin@@{z}\cos@@{z}

sin(2*z) = 2*sin(z)*cos(z)
Sin[2*z] == 2*Sin[z]*Cos[z]
Successful Successful - Successful [Tested: 7]
4.21.E27 2 sin z cos z = 2 tan z 1 + tan 2 z 2 𝑧 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle 2\sin z\cos z=\frac{2\tan z}{1+{\tan^{2}}z}}}
2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}

2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))
2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E28 cos ( 2 z ) = 2 cos 2 z - 1 2 𝑧 2 2 𝑧 1 {\displaystyle{\displaystyle\cos\left(2z\right)=2{\cos^{2}}z-1}}
\cos@{2z} = 2\cos^{2}@@{z}-1

cos(2*z) = 2*(cos(z))^(2)- 1
Cos[2*z] == 2*(Cos[z])^(2)- 1
Successful Successful - Successful [Tested: 7]
4.21.E28 2 cos 2 z - 1 = 1 - 2 sin 2 z 2 2 𝑧 1 1 2 2 𝑧 {\displaystyle{\displaystyle 2{\cos^{2}}z-1=1-2{\sin^{2}}z}}
2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}

2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)
2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E28 1 - 2 sin 2 z = cos 2 z - sin 2 z 1 2 2 𝑧 2 𝑧 2 𝑧 {\displaystyle{\displaystyle 1-2{\sin^{2}}z={\cos^{2}}z-{\sin^{2}}z}}
1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}

1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)
1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E28 cos 2 z - sin 2 z = 1 - tan 2 z 1 + tan 2 z 2 𝑧 2 𝑧 1 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\cos^{2}}z-{\sin^{2}}z=\frac{1-{\tan^{2}}z}{1+{% \tan^{2}}z}}}
\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}

(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))
(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E29 tan ( 2 z ) = 2 tan z 1 - tan 2 z 2 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle\tan\left(2z\right)=\frac{2\tan z}{1-{\tan^{2}}z}}}
\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}

tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))
Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E29 2 tan z 1 - tan 2 z = 2 cot z cot 2 z - 1 2 𝑧 1 2 𝑧 2 𝑧 2 𝑧 1 {\displaystyle{\displaystyle\frac{2\tan z}{1-{\tan^{2}}z}=\frac{2\cot z}{{\cot% ^{2}}z-1}}}
\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}

(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)
Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]
Successful Successful - Successful [Tested: 7]
4.21.E29 2 cot z cot 2 z - 1 = 2 cot z - tan z 2 𝑧 2 𝑧 1 2 𝑧 𝑧 {\displaystyle{\displaystyle\frac{2\cot z}{{\cot^{2}}z-1}=\frac{2}{\cot z-\tan z% }}}
\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}

(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))
Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]
Successful Successful - Successful [Tested: 7]
4.21.E30 sin ( 3 z ) = 3 sin z - 4 sin 3 z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\sin\left(3z\right)=3\sin z-4{\sin^{3}}z}}
\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}

sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)
Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)
Successful Successful - Successful [Tested: 7]
4.21.E31 cos ( 3 z ) = - 3 cos z + 4 cos 3 z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\cos\left(3z\right)=-3\cos z+4{\cos^{3}}z}}
\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}

cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)
Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)
Successful Successful - Successful [Tested: 7]
4.21.E32 sin ( 4 z ) = 8 cos 3 z sin z - 4 cos z sin z 4 𝑧 8 3 𝑧 𝑧 4 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(4z\right)=8{\cos^{3}}z\sin z-4\cos z\sin z}}
\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}

sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)
Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]
Successful Successful - Successful [Tested: 7]
4.21.E33 cos ( 4 z ) = 8 cos 4 z - 8 cos 2 z + 1 4 𝑧 8 4 𝑧 8 2 𝑧 1 {\displaystyle{\displaystyle\cos\left(4z\right)=8{\cos^{4}}z-8{\cos^{2}}z+1}}
\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1

cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1
Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1
Successful Successful - Successful [Tested: 7]
4.21.E34 cos ( n z ) + i sin ( n z ) = ( cos z + i sin z ) n 𝑛 𝑧 𝑖 𝑛 𝑧 superscript 𝑧 𝑖 𝑧 𝑛 {\displaystyle{\displaystyle\cos\left(nz\right)+i\sin\left(nz\right)=(\cos z+i% \sin z)^{n}}}
\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}

cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)
Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)
Successful Failure - Successful [Tested: 21]
4.21.E35 sin ( n z ) = 2 n - 1 k = 0 n - 1 sin ( z + k π n ) 𝑛 𝑧 superscript 2 𝑛 1 superscript subscript product 𝑘 0 𝑛 1 𝑧 𝑘 𝜋 𝑛 {\displaystyle{\displaystyle\sin\left(nz\right)=2^{n-1}\prod_{k=0}^{n-1}\sin% \left(z+\frac{k\pi}{n}\right)}}
\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}

sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)
Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]
Failure Successful Successful [Tested: 21] Successful [Tested: 7]
4.21#Ex1 sin z = 2 t 1 + t 2 𝑧 2 𝑡 1 superscript 𝑡 2 {\displaystyle{\displaystyle\sin z=\frac{2t}{1+t^{2}}}}
\sin@@{z} = \frac{2t}{1+t^{2}}

sin(z) = (2*t)/(1 + (t)^(2))
Sin[z] == Divide[2*t,1 + (t)^(2)]
Failure Failure
Failed [42 / 42]
Result: 1.782057258+.3375964631*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}

Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}

Result: 1.593808282-.8586367171*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}

Result: .640965885e-1-.3375964631*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[1.782057257377061, 0.33759646322287]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.25234556426971166, 0.8586367168171449]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21#Ex2 cos z = 1 - t 2 1 + t 2 𝑧 1 superscript 𝑡 2 1 superscript 𝑡 2 {\displaystyle{\displaystyle\cos z=\frac{1-t^{2}}{1+t^{2}}}}
\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}

cos(z) = (1 - (t)^(2))/(1 + (t)^(2))
Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]
Failure Failure
Failed [42 / 42]
Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}

Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}

Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}

Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[1.1151584036726099, -0.3969495502290325]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.612380901479495, 0.46907537626850365]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E37 sin z = sin x cosh y + i cos x sinh y 𝑧 𝑥 𝑦 imaginary-unit 𝑥 𝑦 {\displaystyle{\displaystyle\sin z=\sin x\cosh y+\mathrm{i}\cos x\sinh y}}
\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}

sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)
Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]
Successful Successful - Successful [Tested: 18]
4.21.E38 cos z = cos x cosh y - i sin x sinh y 𝑧 𝑥 𝑦 imaginary-unit 𝑥 𝑦 {\displaystyle{\displaystyle\cos z=\cos x\cosh y-\mathrm{i}\sin x\sinh y}}
\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}

cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)
Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]
Successful Successful - Successful [Tested: 18]
4.21.E39 tan z = sin ( 2 x ) + i sinh ( 2 y ) cos ( 2 x ) + cosh ( 2 y ) 𝑧 2 𝑥 imaginary-unit 2 𝑦 2 𝑥 2 𝑦 {\displaystyle{\displaystyle\tan z=\frac{\sin\left(2x\right)+\mathrm{i}\sinh% \left(2y\right)}{\cos\left(2x\right)+\cosh\left(2y\right)}}}
\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}

tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))
Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]
Successful Successful - Successful [Tested: 18]
4.21.E40 cot z = sin ( 2 x ) - i sinh ( 2 y ) cosh ( 2 y ) - cos ( 2 x ) 𝑧 2 𝑥 imaginary-unit 2 𝑦 2 𝑦 2 𝑥 {\displaystyle{\displaystyle\cot z=\frac{\sin\left(2x\right)-\mathrm{i}\sinh% \left(2y\right)}{\cosh\left(2y\right)-\cos\left(2x\right)}}}
\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}

cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))
Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]
Successful Successful - Successful [Tested: 18]
4.21.E41 | sin z | = ( sin 2 x + sinh 2 y ) 1 / 2 𝑧 superscript 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle|\sin z|=({\sin^{2}}x+{\sinh^{2}}y)^{1/2}}}
|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}

abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)
Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.21.E41 ( sin 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) - cos ( 2 x ) ) ) 1 / 2 superscript 2 𝑥 2 𝑦 1 2 superscript 1 2 2 𝑦 2 𝑥 1 2 {\displaystyle{\displaystyle({\sin^{2}}x+{\sinh^{2}}y)^{1/2}=\left(\tfrac{1}{2% }\left(\cosh\left(2y\right)-\cos\left(2x\right)\right)\right)^{1/2}}}
(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}

((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)
((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.21.E42 | cos z | = ( cos 2 x + sinh 2 y ) 1 / 2 𝑧 superscript 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle|\cos z|=({\cos^{2}}x+{\sinh^{2}}y)^{1/2}}}
|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}

abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)
Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.21.E42 ( cos 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) + cos ( 2 x ) ) ) 1 / 2 superscript 2 𝑥 2 𝑦 1 2 superscript 1 2 2 𝑦 2 𝑥 1 2 {\displaystyle{\displaystyle({\cos^{2}}x+{\sinh^{2}}y)^{1/2}=\left(\tfrac{1}{2% }(\cosh\left(2y\right)+\cos\left(2x\right))\right)^{1/2}}}
(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}

((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)
((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.21.E43 | tan z | = ( cosh ( 2 y ) - cos ( 2 x ) cosh ( 2 y ) + cos ( 2 x ) ) 1 / 2 𝑧 superscript 2 𝑦 2 𝑥 2 𝑦 2 𝑥 1 2 {\displaystyle{\displaystyle|\tan z|=\left(\frac{\cosh\left(2y\right)-\cos% \left(2x\right)}{\cosh\left(2y\right)+\cos\left(2x\right)}\right)^{1/2}}}
|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}

abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)
Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)
Successful Failure - Successful [Tested: 18]