4.18: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E1 4.18.E1] | | | [https://dlmf.nist.gov/4.18.E1 4.18.E1] || <math qid="Q1669">\frac{2x}{\pi} \leq \sin@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2x}{\pi} \leq \sin@@{x}</syntaxhighlight> || <math>0 \leq x, x \leq \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>(2*x)/(Pi) <= sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*x,Pi] <= Sin[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E1 4.18.E1] | | | [https://dlmf.nist.gov/4.18.E1 4.18.E1] || <math qid="Q1669">\sin@@{x} \leq x</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{x} \leq x</syntaxhighlight> || <math>0 \leq x, x \leq \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>sin(x) <= x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x] <= x</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E2 4.18.E2] | | | [https://dlmf.nist.gov/4.18.E2 4.18.E2] || <math qid="Q1670">x \leq \tan@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x \leq \tan@@{x}</syntaxhighlight> || <math>0 \leq x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>x <= tan(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x <= Tan[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E3 4.18.E3] | | | [https://dlmf.nist.gov/4.18.E3 4.18.E3] || <math qid="Q1671">\cos@@{x} \leq \frac{\sin@@{x}}{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{x} \leq \frac{\sin@@{x}}{x}</syntaxhighlight> || <math>0 \leq x, x \leq \pi</math> || <syntaxhighlight lang=mathematica>cos(x) <= (sin(x))/(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x] <= Divide[Sin[x],x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E3 4.18.E3] | | | [https://dlmf.nist.gov/4.18.E3 4.18.E3] || <math qid="Q1671">\frac{\sin@@{x}}{x} \leq 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@@{x}}{x} \leq 1</syntaxhighlight> || <math>0 \leq x, x \leq \pi</math> || <syntaxhighlight lang=mathematica>(sin(x))/(x) <= 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[x],x] <= 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E4 4.18.E4] | | | [https://dlmf.nist.gov/4.18.E4 4.18.E4] || <math qid="Q1672">\pi < \frac{\sin@{\pi x}}{x(1-x)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi < \frac{\sin@{\pi x}}{x(1-x)}</syntaxhighlight> || <math>0 < x, x < 1</math> || <syntaxhighlight lang=mathematica>Pi < (sin(Pi*x))/(x*(1 - x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi < Divide[Sin[Pi*x],x*(1 - x)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E4 4.18.E4] | | | [https://dlmf.nist.gov/4.18.E4 4.18.E4] || <math qid="Q1672">\frac{\sin@{\pi x}}{x(1-x)} \leq 4</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@{\pi x}}{x(1-x)} \leq 4</syntaxhighlight> || <math>0 < x, x < 1</math> || <syntaxhighlight lang=mathematica>(sin(Pi*x))/(x*(1 - x)) <= 4</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[Pi*x],x*(1 - x)] <= 4</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E5 4.18.E5] | | | [https://dlmf.nist.gov/4.18.E5 4.18.E5] || <math qid="Q1673">|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(y)) <= abs(sin(x + y*I)) <= cosh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[y]] <= Abs[Sin[x + y*I]] <= Cosh[y]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E6 4.18.E6] | | | [https://dlmf.nist.gov/4.18.E6 4.18.E6] || <math qid="Q1674">|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(y)) <= abs(cos(x + y*I)) <= cosh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[y]] <= Abs[Cos[x + y*I]] <= Cosh[y]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E7 4.18.E7] | | | [https://dlmf.nist.gov/4.18.E7 4.18.E7] || <math qid="Q1675">|\csc@@{z}| \leq \csch@@{|y|}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\csc@@{z}| \leq \csch@@{|y|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(csc(x + y*I)) <= csch(abs(y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Csc[x + y*I]] <= Csch[Abs[y]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E8 4.18.E8] | | | [https://dlmf.nist.gov/4.18.E8 4.18.E8] || <math qid="Q1676">|\cos@@{z}| \leq \cosh@@{|z|}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| \leq \cosh@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(z)) <= cosh(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[z]] <= Cosh[Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18.E9 4.18.E9] | | | [https://dlmf.nist.gov/4.18.E9 4.18.E9] || <math qid="Q1677">|\sin@@{z}| \leq \sinh@@{|z|}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| \leq \sinh@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(z)) <= sinh(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[z]] <= Sinh[Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18#Ex1 4.18#Ex1] | | | [https://dlmf.nist.gov/4.18#Ex1 4.18#Ex1] || <math qid="Q1678">|\cos@@{z}| < 2</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| < 2</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(z)) < 2</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[z]] < 2</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.18#Ex2 4.18#Ex2] | | | [https://dlmf.nist.gov/4.18#Ex2 4.18#Ex2] || <math qid="Q1679">|\sin@@{z}| \leq \tfrac{6}{5}|z|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| \leq \tfrac{6}{5}|z|</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>abs(sin(z)) <= (6)/(5)*abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[z]] <= Divide[6,5]*Abs[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:06, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.18.E1 | \frac{2x}{\pi} \leq \sin@@{x} |
(2*x)/(Pi) <= sin(x)
|
Divide[2*x,Pi] <= Sin[x]
|
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] | |
4.18.E1 | \sin@@{x} \leq x |
sin(x) <= x
|
Sin[x] <= x
|
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] | |
4.18.E2 | x \leq \tan@@{x} |
x <= tan(x)
|
x <= Tan[x]
|
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] | |
4.18.E3 | \cos@@{x} \leq \frac{\sin@@{x}}{x} |
cos(x) <= (sin(x))/(x)
|
Cos[x] <= Divide[Sin[x],x]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.18.E3 | \frac{\sin@@{x}}{x} \leq 1 |
(sin(x))/(x) <= 1
|
Divide[Sin[x],x] <= 1
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.18.E4 | \pi < \frac{\sin@{\pi x}}{x(1-x)} |
Pi < (sin(Pi*x))/(x*(1 - x))
|
Pi < Divide[Sin[Pi*x],x*(1 - x)]
|
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.18.E4 | \frac{\sin@{\pi x}}{x(1-x)} \leq 4 |
(sin(Pi*x))/(x*(1 - x)) <= 4
|
Divide[Sin[Pi*x],x*(1 - x)] <= 4
|
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.18.E5 | |\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y} |
|
abs(sinh(y)) <= abs(sin(x + y*I)) <= cosh(y)
|
Abs[Sinh[y]] <= Abs[Sin[x + y*I]] <= Cosh[y]
|
Failure | Failure | Error | Successful [Tested: 18] |
4.18.E6 | |\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y} |
|
abs(sinh(y)) <= abs(cos(x + y*I)) <= cosh(y)
|
Abs[Sinh[y]] <= Abs[Cos[x + y*I]] <= Cosh[y]
|
Failure | Failure | Error | Successful [Tested: 18] |
4.18.E7 | |\csc@@{z}| \leq \csch@@{|y|} |
|
abs(csc(x + y*I)) <= csch(abs(y))
|
Abs[Csc[x + y*I]] <= Csch[Abs[y]]
|
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
4.18.E8 | |\cos@@{z}| \leq \cosh@@{|z|} |
|
abs(cos(z)) <= cosh(abs(z))
|
Abs[Cos[z]] <= Cosh[Abs[z]]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.18.E9 | |\sin@@{z}| \leq \sinh@@{|z|} |
|
abs(sin(z)) <= sinh(abs(z))
|
Abs[Sin[z]] <= Sinh[Abs[z]]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.18#Ex1 | |\cos@@{z}| < 2 |
|
abs(cos(z)) < 2
|
Abs[Cos[z]] < 2
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.18#Ex2 | |\sin@@{z}| \leq \tfrac{6}{5}|z| |
abs(sin(z)) <= (6)/(5)*abs(z)
|
Abs[Sin[z]] <= Divide[6,5]*Abs[z]
|
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] |