4.8: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E1 4.8.E1] | | | [https://dlmf.nist.gov/4.8.E1 4.8.E1] || <math qid="Q1592">\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | ||
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | ||
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I | Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I | ||
Line 22: | Line 22: | ||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E2 4.8.E2] | | | [https://dlmf.nist.gov/4.8.E2 4.8.E2] || <math qid="Q1593">\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}+\phase@@{z_{2}}, \phase@@{z_{1}}+\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 59] || Successful [Tested: 75] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E3 4.8.E3] | | | [https://dlmf.nist.gov/4.8.E3 4.8.E3] || <math qid="Q1594">\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I | ||
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I | Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I | ||
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1e-9+6.283185307*I | Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1e-9+6.283185307*I | ||
Line 32: | Line 32: | ||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E4 4.8.E4] | | | [https://dlmf.nist.gov/4.8.E4 4.8.E4] || <math qid="Q1595">\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}-\phase@@{z_{2}}, \phase@@{z_{1}}-\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I | ||
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I | Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I | ||
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308*I | Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308*I | ||
Line 39: | Line 39: | ||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E5 4.8.E5] | | | [https://dlmf.nist.gov/4.8.E5 4.8.E5] || <math qid="Q1596">\Ln@{z^{n}} = n\Ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z^{n}} = n\Ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .133199999e-10-6.283185307*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9-6.283185306*I | Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9-6.283185306*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I | Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I | ||
Line 47: | Line 47: | ||
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E6 4.8.E6] | | | [https://dlmf.nist.gov/4.8.E6 4.8.E6] || <math qid="Q1597">\ln@{z^{n}} = n\ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z^{n}} = n\ln@@{z}</syntaxhighlight> || <math>-\pi \leq n\phase@@{z}, n\phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 17]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I | ||
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586] | Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586] | ||
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | ||
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E7 4.8.E7] | | | [https://dlmf.nist.gov/4.8.E7 4.8.E7] || <math qid="Q1598">\ln@@{\frac{1}{z}} = -\ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{1}{z}} = -\ln@@{z}</syntaxhighlight> || <math>|\phase@@{z}| \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((1)/(z)) = - ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[1,z]] == - Log[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E8 4.8.E8] | | | [https://dlmf.nist.gov/4.8.E8 4.8.E8] || <math qid="Q1599">\Ln@{\exp@@{z}} = z+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{\exp@@{z}} = z+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z + 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z + 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-12.56637062*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-12.56637062*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-18.84955592*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-18.84955592*I | ||
Line 62: | Line 62: | ||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E9 4.8.E9] | | | [https://dlmf.nist.gov/4.8.E9 4.8.E9] || <math qid="Q1600">\ln@{\exp@@{z}} = z</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\exp@@{z}} = z</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z}, \imagpart@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] | | | [https://dlmf.nist.gov/4.8.E10 4.8.E10] || <math qid="Q1601">\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = exp(ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == Exp[Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] | | | [https://dlmf.nist.gov/4.8.E10 4.8.E10] || <math qid="Q1601">\exp@{\Ln@@{z}} = z</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\Ln@@{z}} = z</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == z</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E11 4.8.E11] | | | [https://dlmf.nist.gov/4.8.E11 4.8.E11] || <math qid="Q1602">\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | ||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I | Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I | ||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I | Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I | ||
Line 76: | Line 76: | ||
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E12 4.8.E12] | | | [https://dlmf.nist.gov/4.8.E12 4.8.E12] || <math qid="Q1603">\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | ||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I | Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I | ||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I | Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I | ||
Line 84: | Line 84: | ||
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.8.E13 4.8.E13] | | | [https://dlmf.nist.gov/4.8.E13 4.8.E13] || <math qid="Q1604">\ln@{a^{x}} = x\ln@@{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{x}} = x\ln@@{a}</syntaxhighlight> || <math>a > 0</math> || <syntaxhighlight lang=mathematica>ln((a)^(x)) = x*ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(x)] == x*Log[a]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9] | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.8.E14 4.8.E14] | | | [https://dlmf.nist.gov/4.8.E14 4.8.E14] || <math qid="Q1605">a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</syntaxhighlight> || <math>a \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.8.E15 4.8.E15] | | | [https://dlmf.nist.gov/4.8.E15 4.8.E15] || <math qid="Q1606">a^{z}b^{z} = (ab)^{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z}b^{z} = (ab)^{z}</syntaxhighlight> || <math>-\pi \leq \phase@@{a}+\phase@@{b}, \phase@@{a}+\phase@@{b} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) = (a*b)^(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) == (a*b)^(z)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.8.E16 4.8.E16] | | | [https://dlmf.nist.gov/4.8.E16 4.8.E16] || <math qid="Q1607">e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.8.E17 4.8.E17] | | | [https://dlmf.nist.gov/4.8.E17 4.8.E17] || <math qid="Q1608">(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z_{1}}, \imagpart@@{z_{1}} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(exp(z[1]))^(z[2]) = exp(z[1]*z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:05, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.8.E1 | \Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}} |
|
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
|
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
|
Failure | Failure | Failed [25 / 100] Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}
Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}
Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}
Result: .133199999e-10-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}
... skip entries to safe data |
4.8.E2 | \ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}} |
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
|
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
|
Failure | Failure | Successful [Tested: 59] | Successful [Tested: 75] | |
4.8.E3 | \Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}} |
|
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
|
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
|
Failure | Failure | Failed [25 / 100] Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}
Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}
Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}
Result: -.1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}
... skip entries to safe data |
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.8.E4 | \ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}} |
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
|
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
|
Failure | Failure | Failed [3 / 70] Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}
Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}
Result: 6.283185308*I
Test Values: {z[1] = 2, z[2] = -2}
|
Failed [11 / 86]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
4.8.E5 | \Ln@{z^{n}} = n\Ln@@{z} |
|
ln((z)^(n)) = n*ln(z)
|
Log[(z)^(n)] == n*Log[z]
|
Failure | Failure | Failed [5 / 21] Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}
Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}
Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}
Result: .133199999e-10+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3}
... skip entries to safe data |
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
4.8.E6 | \ln@{z^{n}} = n\ln@@{z} |
ln((z)^(n)) = n*ln(z)
|
Log[(z)^(n)] == n*Log[z]
|
Failure | Failure | Failed [1 / 17] Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}
|
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
4.8.E7 | \ln@@{\frac{1}{z}} = -\ln@@{z} |
ln((1)/(z)) = - ln(z)
|
Log[Divide[1,z]] == - Log[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
4.8.E8 | \Ln@{\exp@@{z}} = z+2k\pi\iunit |
|
ln(exp(z)) = z + 2*k*Pi*I
|
Log[Exp[z]] == z + 2*k*Pi*I
|
Failure | Failure | Failed [21 / 21] Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}
Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}
Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}
Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.8.E9 | \ln@{\exp@@{z}} = z |
ln(exp(z)) = z
|
Log[Exp[z]] == z
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
4.8.E10 | \exp@{\ln@@{z}} = \exp@{\Ln@@{z}} |
|
exp(ln(z)) = exp(ln(z))
|
Exp[Log[z]] == Exp[Log[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.8.E10 | \exp@{\Ln@@{z}} = z |
|
exp(ln(z)) = z
|
Exp[Log[z]] == z
|
Successful | Successful | - | Successful [Tested: 7] |
4.8.E11 | \Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit |
|
ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
|
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
|
Failure | Failure | Failed [126 / 126] Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}
Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}
Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}
... skip entries to safe data |
Failed [42 / 42]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.8.E12 | \ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit |
|
ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
|
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
|
Failure | Failure | Failed [126 / 126] Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}
Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}
Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3}
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1}
... skip entries to safe data |
Failed [126 / 126]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.8.E13 | \ln@{a^{x}} = x\ln@@{a} |
ln((a)^(x)) = x*ln(a)
|
Log[(a)^(x)] == x*Log[a]
|
Successful | Failure | - | Successful [Tested: 9] | |
4.8.E14 | a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}} |
(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2]) |
(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2]) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.8.E15 | a^{z}b^{z} = (ab)^{z} |
(a)^(z)* (b)^(z) = (a*b)^(z) |
(a)^(z)* (b)^(z) == (a*b)^(z) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.8.E16 | e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}} |
|
exp(z[1])*exp(z[2]) = exp(z[1]+ z[2]) |
Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.8.E17 | (e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}} |
(exp(z[1]))^(z[2]) = exp(z[1]*z[2]) |
(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |