4.8: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.8.E1 4.8.E1] || [[Item:Q1592|<math>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
| [https://dlmf.nist.gov/4.8.E1 4.8.E1] || <math qid="Q1592">\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I
Line 22: Line 22:
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E2 4.8.E2] || [[Item:Q1593|<math>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}+\phase@@{z_{2}}, \phase@@{z_{1}}+\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 59] || Successful [Tested: 75]
| [https://dlmf.nist.gov/4.8.E2 4.8.E2] || <math qid="Q1593">\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}+\phase@@{z_{2}}, \phase@@{z_{1}}+\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 59] || Successful [Tested: 75]
|-  
|-  
| [https://dlmf.nist.gov/4.8.E3 4.8.E3] || [[Item:Q1594|<math>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I
| [https://dlmf.nist.gov/4.8.E3 4.8.E3] || <math qid="Q1594">\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1e-9+6.283185307*I
Line 32: Line 32:
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E4 4.8.E4] || [[Item:Q1595|<math>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}-\phase@@{z_{2}}, \phase@@{z_{1}}-\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
| [https://dlmf.nist.gov/4.8.E4 4.8.E4] || <math qid="Q1595">\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}-\phase@@{z_{2}}, \phase@@{z_{1}}-\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308*I
Line 39: Line 39:
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E5 4.8.E5] || [[Item:Q1596|<math>\Ln@{z^{n}} = n\Ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z^{n}} = n\Ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .133199999e-10-6.283185307*I
| [https://dlmf.nist.gov/4.8.E5 4.8.E5] || <math qid="Q1596">\Ln@{z^{n}} = n\Ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z^{n}} = n\Ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I
Line 47: Line 47:
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E6 4.8.E6] || [[Item:Q1597|<math>\ln@{z^{n}} = n\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z^{n}} = n\ln@@{z}</syntaxhighlight> || <math>-\pi \leq n\phase@@{z}, n\phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 17]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I
| [https://dlmf.nist.gov/4.8.E6 4.8.E6] || <math qid="Q1597">\ln@{z^{n}} = n\ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z^{n}} = n\ln@@{z}</syntaxhighlight> || <math>-\pi \leq n\phase@@{z}, n\phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 17]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E7 4.8.E7] || [[Item:Q1598|<math>\ln@@{\frac{1}{z}} = -\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{1}{z}} = -\ln@@{z}</syntaxhighlight> || <math>|\phase@@{z}| \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((1)/(z)) = - ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[1,z]] == - Log[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.8.E7 4.8.E7] || <math qid="Q1598">\ln@@{\frac{1}{z}} = -\ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{1}{z}} = -\ln@@{z}</syntaxhighlight> || <math>|\phase@@{z}| \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((1)/(z)) = - ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[1,z]] == - Log[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.8.E8 4.8.E8] || [[Item:Q1599|<math>\Ln@{\exp@@{z}} = z+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{\exp@@{z}} = z+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z + 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z + 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I
| [https://dlmf.nist.gov/4.8.E8 4.8.E8] || <math qid="Q1599">\Ln@{\exp@@{z}} = z+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{\exp@@{z}} = z+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z + 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z + 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-18.84955592*I
Line 62: Line 62:
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E9 4.8.E9] || [[Item:Q1600|<math>\ln@{\exp@@{z}} = z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\exp@@{z}} = z</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z}, \imagpart@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.8.E9 4.8.E9] || <math qid="Q1600">\ln@{\exp@@{z}} = z</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\exp@@{z}} = z</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z}, \imagpart@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || [[Item:Q1601|<math>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = exp(ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == Exp[Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || <math qid="Q1601">\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = exp(ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == Exp[Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || [[Item:Q1601|<math>\exp@{\Ln@@{z}} = z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\Ln@@{z}} = z</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == z</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || <math qid="Q1601">\exp@{\Ln@@{z}} = z</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\Ln@@{z}} = z</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == z</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.8.E11 4.8.E11] || [[Item:Q1602|<math>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
| [https://dlmf.nist.gov/4.8.E11 4.8.E11] || <math qid="Q1602">\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I
Line 76: Line 76:
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E12 4.8.E12] || [[Item:Q1603|<math>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
| [https://dlmf.nist.gov/4.8.E12 4.8.E12] || <math qid="Q1603">\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I
Line 84: Line 84:
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.8.E13 4.8.E13] || [[Item:Q1604|<math>\ln@{a^{x}} = x\ln@@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{x}} = x\ln@@{a}</syntaxhighlight> || <math>a > 0</math> || <syntaxhighlight lang=mathematica>ln((a)^(x)) = x*ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(x)] == x*Log[a]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/4.8.E13 4.8.E13] || <math qid="Q1604">\ln@{a^{x}} = x\ln@@{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{x}} = x\ln@@{a}</syntaxhighlight> || <math>a > 0</math> || <syntaxhighlight lang=mathematica>ln((a)^(x)) = x*ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(x)] == x*Log[a]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E14 4.8.E14] || [[Item:Q1605|<math>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</syntaxhighlight> || <math>a \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.8.E14 4.8.E14] || <math qid="Q1605">a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</syntaxhighlight> || <math>a \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E15 4.8.E15] || [[Item:Q1606|<math>a^{z}b^{z} = (ab)^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z}b^{z} = (ab)^{z}</syntaxhighlight> || <math>-\pi \leq \phase@@{a}+\phase@@{b}, \phase@@{a}+\phase@@{b} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) = (a*b)^(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) == (a*b)^(z)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.8.E15 4.8.E15] || <math qid="Q1606">a^{z}b^{z} = (ab)^{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z}b^{z} = (ab)^{z}</syntaxhighlight> || <math>-\pi \leq \phase@@{a}+\phase@@{b}, \phase@@{a}+\phase@@{b} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) = (a*b)^(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) == (a*b)^(z)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E16 4.8.E16] || [[Item:Q1607|<math>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.8.E16 4.8.E16] || <math qid="Q1607">e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E17 4.8.E17] || [[Item:Q1608|<math>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z_{1}}, \imagpart@@{z_{1}} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(exp(z[1]))^(z[2]) = exp(z[1]*z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.8.E17 4.8.E17] || <math qid="Q1608">(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z_{1}}, \imagpart@@{z_{1}} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(exp(z[1]))^(z[2]) = exp(z[1]*z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:05, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.8.E1 Ln ( z 1 z 2 ) = Ln z 1 + Ln z 2 multivalued-natural-logarithm subscript 𝑧 1 subscript 𝑧 2 multivalued-natural-logarithm subscript 𝑧 1 multivalued-natural-logarithm subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{Ln}\left(z_{1}z_{2}\right)=% \operatorname{Ln}z_{1}+\operatorname{Ln}z_{2}}}
\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}

ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}

Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}

Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}

Result: .133199999e-10-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}

Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}

... skip entries to safe data
4.8.E2 ln ( z 1 z 2 ) = ln z 1 + ln z 2 subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\ln\left(z_{1}z_{2}\right)=\ln z_{1}+\ln z_{2}}}
\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}
- π ph z 1 + ph z 2 , ph z 1 + ph z 2 π formulae-sequence 𝜋 phase subscript 𝑧 1 phase subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 𝜋 {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}z_{1}+\operatorname{ph}z_% {2},\operatorname{ph}z_{1}+\operatorname{ph}z_{2}\leq\pi}}
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
Failure Failure Successful [Tested: 59] Successful [Tested: 75]
4.8.E3 Ln z 1 z 2 = Ln z 1 - Ln z 2 multivalued-natural-logarithm subscript 𝑧 1 subscript 𝑧 2 multivalued-natural-logarithm subscript 𝑧 1 multivalued-natural-logarithm subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{Ln}\frac{z_{1}}{z_{2}}=\operatorname% {Ln}z_{1}-\operatorname{Ln}z_{2}}}
\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}

ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}

Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}

Result: -.1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}

... skip entries to safe data
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E4 ln z 1 z 2 = ln z 1 - ln z 2 subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\ln\frac{z_{1}}{z_{2}}=\ln z_{1}-\ln z_{2}}}
\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}
- π ph z 1 - ph z 2 , ph z 1 - ph z 2 π formulae-sequence 𝜋 phase subscript 𝑧 1 phase subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 𝜋 {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}z_{1}-\operatorname{ph}z_% {2},\operatorname{ph}z_{1}-\operatorname{ph}z_{2}\leq\pi}}
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
Failure Failure
Failed [3 / 70]
Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}

Result: 6.283185308*I
Test Values: {z[1] = 2, z[2] = -2}

Failed [11 / 86]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.8.E5 Ln ( z n ) = n Ln z multivalued-natural-logarithm superscript 𝑧 𝑛 𝑛 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\operatorname{Ln}\left(z^{n}\right)=n\operatorname% {Ln}z}}
\Ln@{z^{n}} = n\Ln@@{z}

ln((z)^(n)) = n*ln(z)
Log[(z)^(n)] == n*Log[z]
Failure Failure
Failed [5 / 21]
Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}

Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}

Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}

Result: .133199999e-10+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3}

... skip entries to safe data
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.8.E6 ln ( z n ) = n ln z superscript 𝑧 𝑛 𝑛 𝑧 {\displaystyle{\displaystyle\ln\left(z^{n}\right)=n\ln z}}
\ln@{z^{n}} = n\ln@@{z}
- π n ph z , n ph z π formulae-sequence 𝜋 𝑛 phase 𝑧 𝑛 phase 𝑧 𝜋 {\displaystyle{\displaystyle-\pi\leq n\operatorname{ph}z,n\operatorname{ph}z% \leq\pi}}
ln((z)^(n)) = n*ln(z)
Log[(z)^(n)] == n*Log[z]
Failure Failure
Failed [1 / 17]
Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}

Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.8.E7 ln 1 z = - ln z 1 𝑧 𝑧 {\displaystyle{\displaystyle\ln\frac{1}{z}=-\ln z}}
\ln@@{\frac{1}{z}} = -\ln@@{z}
| ph z | π phase 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\pi}}
ln((1)/(z)) = - ln(z)
Log[Divide[1,z]] == - Log[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.8.E8 Ln ( exp z ) = z + 2 k π i multivalued-natural-logarithm 𝑧 𝑧 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}\left(\exp z\right)=z+2k\pi% \mathrm{i}}}
\Ln@{\exp@@{z}} = z+2k\pi\iunit

ln(exp(z)) = z + 2*k*Pi*I
Log[Exp[z]] == z + 2*k*Pi*I
Failure Failure
Failed [21 / 21]
Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E9 ln ( exp z ) = z 𝑧 𝑧 {\displaystyle{\displaystyle\ln\left(\exp z\right)=z}}
\ln@{\exp@@{z}} = z
- π z , z π formulae-sequence 𝜋 𝑧 𝑧 𝜋 {\displaystyle{\displaystyle-\pi\leq\Im z,\Im z\leq\pi}}
ln(exp(z)) = z
Log[Exp[z]] == z
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.8.E10 exp ( ln z ) = exp ( Ln z ) 𝑧 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\exp\left(\ln z\right)=\exp\left(\operatorname{Ln}% z\right)}}
\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}

exp(ln(z)) = exp(ln(z))
Exp[Log[z]] == Exp[Log[z]]
Successful Successful - Successful [Tested: 7]
4.8.E10 exp ( Ln z ) = z multivalued-natural-logarithm 𝑧 𝑧 {\displaystyle{\displaystyle\exp\left(\operatorname{Ln}z\right)=z}}
\exp@{\Ln@@{z}} = z

exp(ln(z)) = z
Exp[Log[z]] == z
Successful Successful - Successful [Tested: 7]
4.8.E11 Ln ( a z ) = z Ln a + 2 k π i multivalued-natural-logarithm superscript 𝑎 𝑧 𝑧 multivalued-natural-logarithm 𝑎 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}\left(a^{z}\right)=z\operatorname% {Ln}a+2k\pi\mathrm{i}}}
\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit

ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
Failure Failure
Failed [126 / 126]
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E12 ln ( a z ) = z ln a + 2 k π i superscript 𝑎 𝑧 𝑧 𝑎 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\ln\left(a^{z}\right)=z\ln a+2k\pi\mathrm{i}}}
\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit

ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
Failure Failure
Failed [126 / 126]
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}

Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3}

Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1}

... skip entries to safe data
Failed [126 / 126]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.8.E13 ln ( a x ) = x ln a superscript 𝑎 𝑥 𝑥 𝑎 {\displaystyle{\displaystyle\ln\left(a^{x}\right)=x\ln a}}
\ln@{a^{x}} = x\ln@@{a}
a > 0 𝑎 0 {\displaystyle{\displaystyle a>0}}
ln((a)^(x)) = x*ln(a)
Log[(a)^(x)] == x*Log[a]
Successful Failure - Successful [Tested: 9]
4.8.E14 a z 1 a z 2 = a z 1 + z 2 superscript 𝑎 subscript 𝑧 1 superscript 𝑎 subscript 𝑧 2 superscript 𝑎 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle a^{z_{1}}a^{z_{2}}=a^{z_{1}+z_{2}}}}
a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}
a 0 𝑎 0 {\displaystyle{\displaystyle a\neq 0}}
(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])
(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])
Skipped - no semantic math Skipped - no semantic math - -
4.8.E15 a z b z = ( a b ) z superscript 𝑎 𝑧 superscript 𝑏 𝑧 superscript 𝑎 𝑏 𝑧 {\displaystyle{\displaystyle a^{z}b^{z}=(ab)^{z}}}
a^{z}b^{z} = (ab)^{z}
- π ph a + ph b , ph a + ph b π formulae-sequence 𝜋 phase 𝑎 phase 𝑏 phase 𝑎 phase 𝑏 𝜋 {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}a+\operatorname{ph}b,% \operatorname{ph}a+\operatorname{ph}b\leq\pi}}
(a)^(z)* (b)^(z) = (a*b)^(z)
(a)^(z)* (b)^(z) == (a*b)^(z)
Skipped - no semantic math Skipped - no semantic math - -
4.8.E16 e z 1 e z 2 = e z 1 + z 2 superscript 𝑒 subscript 𝑧 1 superscript 𝑒 subscript 𝑧 2 superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle e^{z_{1}}e^{z_{2}}=e^{z_{1}+z_{2}}}}
e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}

exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])
Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]
Skipped - no semantic math Skipped - no semantic math - -
4.8.E17 ( e z 1 ) z 2 = e z 1 z 2 superscript superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle(e^{z_{1}})^{z_{2}}=e^{z_{1}z_{2}}}}
(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}
- π z 1 , z 1 π formulae-sequence 𝜋 subscript 𝑧 1 subscript 𝑧 1 𝜋 {\displaystyle{\displaystyle-\pi\leq\Im z_{1},\Im z_{1}\leq\pi}}
(exp(z[1]))^(z[2]) = exp(z[1]*z[2])
(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]
Skipped - no semantic math Skipped - no semantic math - -